论文标题
nerfinvertor:高保真nerf-gan倒置,用于单杆真实图像动画
NeRFInvertor: High Fidelity NeRF-GAN Inversion for Single-shot Real Image Animation
论文作者
论文摘要
基于NERF的生成模型在生成具有一致的3D几何形状的高质量图像时表现出了令人印象深刻的能力。尽管成功合成了从潜在空间随机取样的假身份图像,但由于其所谓的倒置问题,采用这些模型来生成真实受试者的面部图像仍然是一项艰巨的任务。在本文中,我们提出了一种通用方法,可以手术对这些NERF-GAN模型进行微调,以便仅通过单个图像实现真实主题的高保真动画。鉴于针对室外真实图像的优化潜在代码,我们在渲染图像上采用2D损失功能来减少身份差距。此外,我们的方法利用了在优化的潜在代码周围的内域邻域样品来利用明确和隐式的3D正规化,以删除几何和视觉伪像。我们的实验证实了我们方法在跨不同数据集的多个NERF-GAN模型上真实,高保真和3D一致动画的有效性。
Nerf-based Generative models have shown impressive capacity in generating high-quality images with consistent 3D geometry. Despite successful synthesis of fake identity images randomly sampled from latent space, adopting these models for generating face images of real subjects is still a challenging task due to its so-called inversion issue. In this paper, we propose a universal method to surgically fine-tune these NeRF-GAN models in order to achieve high-fidelity animation of real subjects only by a single image. Given the optimized latent code for an out-of-domain real image, we employ 2D loss functions on the rendered image to reduce the identity gap. Furthermore, our method leverages explicit and implicit 3D regularizations using the in-domain neighborhood samples around the optimized latent code to remove geometrical and visual artifacts. Our experiments confirm the effectiveness of our method in realistic, high-fidelity, and 3D consistent animation of real faces on multiple NeRF-GAN models across different datasets.