论文标题

基于固定模型的混合体,用于多个地理特征标签的基于MPI的平行遗传算法

An MPI-based parallel genetic algorithm for multiple geographical feature label placement based on the hybrid of fixed-sliding models

论文作者

Lessani, Mohammad Naser, Li, Zhenlong, Deng, Jiqiu, Guo, Zhiyong

论文摘要

数十年来,多个地理特征标签位置(MGFLP)一直是地理信息可视化的基本问题。标签定位的性质被证明是一个NP硬性问题,其中这种问题的复杂性直接受到输入数据集的数量的影响。计算机技术和强大方法的进步解决了标签问题。但是,在最近的研究中不太考虑的是MGFLP的计算复杂性,这大大降低了最近引入方法的可采用性。在这项研究中,基于固定位置模型和滑动模型的混合物,提出了MGFLP的MPI平行遗传算法,以标记地理特征的固定类型。为了评估标签位置的质量,根据四个质量指标,标签 - 功能冲突,标签标签冲突,标签歧义因子和点位置优先级,定义了质量功能。实验结果表明,与先前的研究相比,提出的算法显着降低了质量函数的总分和标签放置时间的计算时间。该算法在不到一分钟的情况下获得了6个标签 - 功能冲突的结果,而Parallel-MS(Lessani等,2021)在20分钟以上获得了结果,同一数据集的12个标签 - 特征冲突。

Multiple geographical feature label placement (MGFLP) has been a fundamental problem in geographic information visualization for decades. The nature of label positioning is proven an NP-hard problem, where the complexity of such a problem is directly influenced by the volume of input datasets. Advances in computer technology and robust approaches have addressed the problem of labeling. However, what is less considered in recent studies is the computational complexity of MGFLP, which significantly decreases the adoptability of those recently introduced approaches. In this study, an MPI parallel genetic algorithm is proposed for MGFLP based on a hybrid of fixed position model and sliding model to label fixed-types of geographical features. To evaluate the quality of label placement, a quality function is defined based on four quality metrics, label-feature conflict, label-label conflict, label ambiguity factor, and label position priority for points and polygons. Experimental results reveal that the proposed algorithm significantly reduced the overall score of the quality function and the computational time of label placement compared to the previous studies. The algorithm achieves a result in less than one minute with 6 label-feature conflicts, while Parallel-MS (Lessani et al., 2021) obtains the result in more than 20 minutes with 12 label-feature conflicts for the same dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源