论文标题

降低高级图的细化

Refinement of Higher-Rank Graph Reduction

论文作者

Lippert, S. Joseph

论文摘要

鉴于级别K的行,无源的,无源的图,我们扩展了Eckhardt等人引入的还原的定义。这在Eilers等人提出的有限的定向图$ C^*$ - 代数的几何分类范围内构成了巨大的一步。到更高的图形$ C^*$ - 代数。这一新举动是延迟的反面,直接扩展了先前的版本,并提供了先前无证件的莫里塔(Morita)类别的K-Graphs类。为了追求这一扩展,我们正式化了构成高级图的内容。具体而言,我们将这种形式化用作新的几何推理与经典类别理论结构之间的桥梁。

Given a row-finite, source-free, graph of rank k, we extend the definition of reduction introduced by Eckhardt et al. This constitutes a large step forward in the extension of the geometric classification of finite directed graph $C^*$-algebras presented by Eilers et al. to higher-rank graph $C^*$-algebras. This new move acts as an inverse to delay, directly extends the previous version, and provides previously undocumented Morita classes of k-graphs. In pursuit of this extension, we formalize what constitutes a higher-rank graph move. Specifically, we use this formalization as a bridge between the new geometric reasoning and the classical category theoretic construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源