论文标题
第一原理计算的水泥复合类似物的热电特性
Thermoelectric properties of cement composite analogues from first principles calculations
论文作者
论文摘要
每年全球浪费的能源浪费的一小部分,因此碳排放过多。虽然在寒冷的月份和气候下直接损失热量,但需要在炎热气候中加热负荷增加,但需要冷却和通风。提高建筑物能源效率的一种途径是在建筑物的结构内整合热电设备和材料,以利用内部和外部之间的温度梯度以进行有用的工作。基于水泥的材料在现代建筑中无处不在,并提供了一个有趣的机会。我们介绍了与使用Boltzmann传输方法的密度功能理论计算,对与硅酸盐水合物(C-S-H)凝胶类似物Tobermorite相关的电子传输系数(C-S-H)凝胶类似物相关的系统研究。 Seebeck系数的计算值在典型的幅度(200-600 $μV/k $)之内,表示良好的热电材料。由于存在较大的Si-O Tetrahedra位点,因此预计Tobermorite模型本质上是$ P $型热电材料。 Tobermorite型号的计算出的电子$ ZT $的最佳值为0.983,为0.983,at(400 $ \ MATHRM {k} $,$ 10^{17} $ $ \ $ \ $ \ MATHRM {cm^{ - 3}} $ tobermorite for Tobermorite9Å,0.985 at(400 $ \ mathrim)(400 $ \ mathrrrriite) $ \ mathrm {cm^{ - 3}} $)tobermorite11Å和1.20 at(225 $ \ mathrm {k} $和$ 10^{19} $ $ $ \ $ \ mathrm {cm^{-3}} $分别为Tobermorite14Å。
Buildings are responsible for a considerable fraction of the energy wasted globally every year, and as a result, excess carbon emissions. While heat is lost directly in colder months and climates, resulting in increased heating loads, in hot climates cooling and ventilation is required. One avenue towards improving the energy efficiency of buildings is to integrate thermoelectric devices and materials within the fabric of the building to exploit the temperature gradient between the inside and outside to do useful work. Cement-based materials are ubiquitous in modern buildings and present an interesting opportunity to be functionalised. We present a systematic investigation of the electronic transport coefficients relevant to the thermoelectric materials of the calcium silicate hydrate (C-S-H) gel analogue, tobermorite, using Density Functional Theory calculations with the Boltzmann transport method. The calculated values of the Seebeck coefficient are within the typical magnitude (200 - 600 $μV/K$) indicative of a good thermoelectric material. The tobermorite models are predicted to be intrinsically $p$-type thermoelectric material because of the presence of large concentration of the Si-O tetrahedra sites. The calculated electronic $ZT$ for the tobermorite models have their optimal values of 0.983 at (400 $\mathrm{K}$ and $10^{17}$ $\mathrm{cm^{-3}}$) for tobermorite 9 Å, 0.985 at (400 $\mathrm{K}$ and $10^{17}$ $\mathrm{cm^{-3}}$) for tobermorite 11 Å and 1.20 at (225 $\mathrm{K}$ and $10^{19}$ $\mathrm{cm^{-3}}$) for tobermorite 14 Å, respectively.