论文标题

寿命

Lifetime of the hypertriton

论文作者

Gazda, D., Pérez-Obiol, A., Gal, A., Friedman, E.

论文摘要

在过去的十年中,Hypertriton寿命$τ({}_λ^3 \ mathrm {h})$的值是在相对论重离子(RHI)碰撞实验中得出的。最近一次的爱丽丝合作测量是唯一的实验,其中报告的$τ({}_λ^3 \ mathrm {h})$足够接近免费的 - $ up $λ$ lifetime $τ_λ$,正如预期的那样,预期的是$ {}_λ^3 \} $ nake thairy trecription thairmy thairmy trecription trecried trecried nake trieldife。我们从理论上对此进行了回顾,使用$ {}_λ^3 \ Mathrm {h} $ {} $ { $γ({}_λ^3 \ mathrm {h} \ to {}^3 \ mathrm {he}+π^ - )$。我们发现$ {}_λ^3 \ mathrm {h} $和$π^ - {}^3 \ mathrm {he} $ final-state交互作用是由$ {}_λ^3 \ mathrm {h} $ in $ {}_λ^3 \ mathrm {h} $产生的重大但相反的贡献。为了得出$τ({}_λ^3 \ mathrm {h})$,我们使用测量的分支分支率,评估了包含$π^ - $ decay速率$γ_{}_λ^3 \ Mathrm {}_λ^3 \ mathrm {h})$ $γ({}_λ^3 \ Mathrm {h} \ to {}^3 \ Mathrm {He}+π^ - )/γ_{π^ - }({}_λ^3 \ 3 \ 3 \ 3 \ Mathrm {h}) 规则。所得的$τ({}_λ^3 \ mathrm {h})$差异很大,鲜为人知的$λ$分离能量$ e _ {\ mathrm {sep}}}}({}_λ^3 \ 3 \ Mathrm {h})$ an $τ({}_λ^3 \ mathrm {h})$测量$ e _ {\ mathrm {sep}}}}}({}_λ^3 \ Mathrm {h h})$。

Conflicting values of the hypertriton lifetime $τ({}_Λ^3\mathrm{H})$ were derived in relativistic heavy ion (RHI) collision experiments over the last decade. A very recent ALICE Collaboration measurement is the only experiment where the reported $τ({}_Λ^3\mathrm{H})$ comes sufficiently close to the free-$Λ$ lifetime $τ_Λ$,as expected naively for a very weakly bound $Λ$ in ${}_Λ^3\mathrm{H}$. We revisited theoretically this ${}_Λ^3\mathrm{H}$ lifetime puzzle, using ${}_Λ^3\mathrm{H}$ and ${}^3\mathrm{He}$ wave functions computed within the abinitio no-core shell model employing interactions derived from chiral effective field theory to calculate the two-body decay rate $Γ({}_Λ^3\mathrm{H}\to{}^3\mathrm{He}+π^-)$. We found significant but opposing contributions arising from $ΣNN$ admixtures in ${}_Λ^3\mathrm{H}$ and from $π^- -{}^3\mathrm{He}$ final-state interaction. To derive $τ({}_Λ^3\mathrm{H})$, we evaluated the inclusive $π^-$ decay rate $Γ_{π^-}({}_Λ^3\mathrm{H})$ by using the measured branching ratio $Γ({}_Λ^3\mathrm{H}\to{}^3\mathrm{He}+π^-)/Γ_{π^-}({}_Λ^3\mathrm{H})$ and added the $π^0$ contributions through the $ΔI = \frac{1}{2}$ rule. The resulting $τ({}_Λ^3\mathrm{H})$ varies strongly with the rather poorly known $Λ$ separation energy $E_{\mathrm{sep}}({}_Λ^3\mathrm{H})$ and it is thus possible to associate each one of the distinct RHI $τ({}_Λ^3\mathrm{H})$ measurements with its own underlying value of $E_{\mathrm{sep}}({}_Λ^3\mathrm{H})$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源