论文标题

周期性Korteweg-de Vries方程的Koopman分析

Koopman analysis of the periodic Korteweg-de Vries equation

论文作者

Parker, Jeremy P, Valva, Claire

论文摘要

Koopman操作员的特征光谱使非线性动力学分解为状态空间的非线性函数,并具有纯粹指数和正弦的时间依赖性。对于有限数量的动态系统,可以通过分析和分析找到这些Koopman征函数。在这里,使用周期性的反向散射变换和一些代数几何概念,这是针对Korteweg-de Vries方程进行的。据作者所知,这是对没有微不足道的全球吸引子的偏微分方程的第一个完整的Koopman分析。结果显示,通过数据驱动的动态模式分解方法(DMD)计算出的频率。我们证明,通常DMD在假想轴附近给出了大量的特征值,并在这种情况下表明应如何解释这些特征值。

The eigenspectrum of the Koopman operator enables the decomposition of nonlinear dynamics into a sum of nonlinear functions of the state space with purely exponential and sinusoidal time dependence. For a limited number of dynamical systems, it is possible to find these Koopman eigenfunctions exactly and analytically. Here, this is done for the Korteweg-de Vries equation on a periodic interval, using the periodic inverse scattering transform and some concepts of algebraic geometry. To the authors' knowledge, this is the first complete Koopman analysis of a partial differential equation which does not have a trivial global attractor. The results are shown to match the frequencies computed by the data-driven method of dynamic mode decomposition (DMD). We demonstrate that in general DMD gives a large number of eigenvalues near the imaginary axis, and show how these should be interpretted in this setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源