论文标题
与具有两个不同主要因素的整数的立方体总和问题
Cube sum problem for integers having exactly two distinct prime factors
论文作者
论文摘要
给定整数n> 1,这是一个经典的毒液问题,即n是否可以作为两个理性立方的总和。考虑到n个特殊案例,对这个问题的研究具有丰富的历史,可以追溯到西尔维斯特,萨特格,塞尔默等的作品,并可以追溯到Alpöge-Bhargava-Shnidman的最新作品。在本文中,我们考虑了无立方体整数N的立方体总和,该问题具有两个不同的主要因素,没有一个是3。
Given an integer n>1, it is a classical Diophantine problem that whether n can be written as a sum of two rational cubes. The study of this problem, considering several special cases of n, has a copious history that can be traced back to the works of Sylvester, Satgé, Selmer etc. and up to the recent works of Alpöge-Bhargava-Shnidman. In this article, we consider the cube sum problem for cube-free integers n which has two distinct prime factors none of which is 3.