论文标题

自主驾驶的互动感知模型预测控制

Interaction-aware Model Predictive Control for Autonomous Driving

论文作者

Wang, Renzi, Schuurmans, Mathijs, Patrinos, Panagiotis

论文摘要

由于受控车辆与周围交通参与者的不确定行为之间的牢固相互作用,车道变更和车道合并仍然是自主驾驶的挑战性任务。这种相互作用引起了车辆状态对周围车辆(随机)动力学的依赖性,从而增加了预测未来轨迹的困难。此外,较小的相对距离会导致传统的强大方法变得过于保守,需要明确意识到车间相互作用的控制方法。朝向这些目标,我们提出了与在线学习框架集成的互动感知随机模型预测控制(MPC)策略,该策略将给定驾驶员的合作级别建模为州依赖性概率分布中的未知参数。在线学习框架可以自适应地估计周围车辆与车辆过去轨迹的合作水平,并将其与运动型车辆模型相结合,以预测多模式的未来状态轨迹的概率。学习是通过逻辑回归进行的,可以快速在线计算。在MPC算法中使用多进口预测来计算最佳控制输入,同时满足安全性限制。我们与以不同随机选择的合作级别的驱动程序进行交互式车道更改场景中演示了我们的算法。

Lane changing and lane merging remains a challenging task for autonomous driving, due to the strong interaction between the controlled vehicle and the uncertain behavior of the surrounding traffic participants. The interaction induces a dependence of the vehicles' states on the (stochastic) dynamics of the surrounding vehicles, increasing the difficulty of predicting future trajectories. Furthermore, the small relative distances cause traditional robust approaches to become overly conservative, necessitating control methods that are explicitly aware of inter-vehicle interaction. Towards these goals, we propose an interaction-aware stochastic model predictive control (MPC) strategy integrated with an online learning framework, which models a given driver's cooperation level as an unknown parameter in a state-dependent probability distribution. The online learning framework adaptively estimates the surrounding vehicle's cooperation level with the vehicle's past trajectory and combines this with a kinematic vehicle model to predict the probability of a multimodal future state trajectory. The learning is conducted with logistic regression which enables fast online computation. The multi-future prediction is used in the MPC algorithm to compute the optimal control input while satisfying safety constraints. We demonstrate our algorithm in an interactive lane changing scenario with drivers in different randomly selected cooperation levels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源