论文标题

使用模拟的天气引力波数据和电磁波数据来研究巧合问题和哈勃张力问题

Using simulated Tianqin gravitational wave data and electromagnetic wave data to study the coincidence problem and Hubble tension problem

论文作者

Zhang, JiaWei, Diao, Jingwang, Pan, Yu, Cheng, MingYue, Li, Jin

论文摘要

在本文中,我们使用电磁波数据(H0licow,$ h(z)$,SNE)和重力波数据(Tianqin)来限制相互作用的暗能量(IDE)模型,并研究哈勃的张力问题和巧合问题。 By combining these four kinds of data (Tianqin+H0LiCOW+SNe+$H(z)$), we obtained the parameter values at the confidence interval of $1σ$: $Ω_m=0.36\pm0.18$, $ω_x=-1.29^{+0.61}_{-0.23}$, $ξ= 3.15^{+0.36} _ { - 1.1} $,$ h_0 = 70.04 \ pm0.42 $ $ $ $ kms^{ - 1} mpc^{ - 1} $。根据我们的结果,$ h_0 $的最佳阀门表明,可以在某种程度上缓解哈勃张力问题。此外,$ξ+3Ω_x= -0.72^{+2.19} _ { - 1.19}(1σ)$,其中中心值表明重合问题略有减轻。但是,$ξ+3Ω_x= 0 $仍在$1σ$误差范围内,这表明$λ$ CDM模型仍然是与目前观察数据最吻合的模型。最后,我们将电磁波和重力波的约束结果与模型参数进行比较,并发现电磁波数据对模型参数的约束效应比模拟的Tianqin重力波数据的约束效应要好。

In this paper, we use electromagnetic wave data (H0LiCOW, $H(z)$, SNe) and gravitational wave data (Tianqin) to constrain the interacting dark energy (IDE) model and investigate the Hubble tension problem and coincidences problem. By combining these four kinds of data (Tianqin+H0LiCOW+SNe+$H(z)$), we obtained the parameter values at the confidence interval of $1σ$: $Ω_m=0.36\pm0.18$, $ω_x=-1.29^{+0.61}_{-0.23}$, $ξ=3.15^{+0.36}_{-1.1}$, and $H_0=70.04\pm0.42$ $kms^{-1}Mpc^{-1}$. According to our results, the best valve of $H_0$ show that the Hubble tension problem can be alleviated to some extent. In addition, the $ξ+3ω_x = -0.72^{+2.19}_{-1.19}(1σ)$ of which the center value indicates the coincidence problem is slightly alleviated. However, the $ξ+3ω_x = 0$ is still within the $1σ$ error range which indicates the $Λ$CDM model is still the model which is in best agreement with the observational data at present. Finally, we compare the constraint results of electromagnetic wave and gravitational wave on the model parameters and find that the constraint effect of electromagnetic wave data on model parameters is better than that of simulated Tianqin gravitational wave data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源