论文标题

基于gan的隐私权联合群集

Privacy-Preserving Federated Deep Clustering based on GAN

论文作者

Yan, Jie, Liu, Jing, Qi, Ji, Zhang, Zhong-Yuan

论文摘要

联合聚类(FC)是为联合环境设计的集中聚类的重要扩展,其中挑战在于构建全球相似性度量而无需共享私人数据。 FC的常规方法通常采用集中式方法的扩展,例如K-均值和模糊C均值。但是,这些方法容易受到客户之间非独立和分布的(非IID)数据的影响,从而导致次优性能,尤其是具有高维度的数据。在本文中,我们提出了一种新颖的方法来解决这些局限性,通过提出基于生成的对抗网络(GAN)的联合深层聚类的联合深度聚类。每个客户端在本地训练本地生成对抗网络(GAN),并将合成数据上传到服务器。该服务器在合成数据上应用了一个深层聚类网络,以建立$ K $ cluster Centroid,然后将其下载到客户端进行集群分配。理论分析表明,在客户之间共享的GAN生成的样本固有地维护某些隐私保证,从而保护了单个数据的机密性。此外,广泛的实验评估展示了我们提出的方法在实现准确和隐私的联合聚类方面的有效性和实用性。

Federated clustering (FC) is an essential extension of centralized clustering designed for the federated setting, wherein the challenge lies in constructing a global similarity measure without the need to share private data. Conventional approaches to FC typically adopt extensions of centralized methods, like K-means and fuzzy c-means. However, these methods are susceptible to non-independent-and-identically-distributed (non-IID) data among clients, leading to suboptimal performance, particularly with high-dimensional data. In this paper, we present a novel approach to address these limitations by proposing a Privacy-Preserving Federated Deep Clustering based on Generative Adversarial Networks (GANs). Each client trains a local generative adversarial network (GAN) locally and uploads the synthetic data to the server. The server applies a deep clustering network on the synthetic data to establish $k$ cluster centroids, which are then downloaded to the clients for cluster assignment. Theoretical analysis demonstrates that the GAN-generated samples, shared among clients, inherently uphold certain privacy guarantees, safeguarding the confidentiality of individual data. Furthermore, extensive experimental evaluations showcase the effectiveness and utility of our proposed method in achieving accurate and privacy-preserving federated clustering.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源