论文标题

基于知识蒸馏的盲目超级分辨率的降解估计

Knowledge Distillation based Degradation Estimation for Blind Super-Resolution

论文作者

Xia, Bin, Zhang, Yulun, Wang, Yitong, Tian, Yapeng, Yang, Wenming, Timofte, Radu, Van Gool, Luc

论文摘要

盲图像超分辨率(盲目SR)旨在从其相应的低分辨率(LR)输入图像中恢复高分辨率(HR)图像,并具有未知的降解。现有的大多数作品都设计了每个降解的显式降解估计器,以指导SR。但是,提供多种降解组合(例如,模糊,噪声,JPEG压缩)的混凝土标签是不可行的,以监督降解估计器训练。此外,这些用于某些降解的特殊设计(例如Blur)阻碍了模型被普遍处理以处理不同的降解。为此,有必要设计一个隐式退化估计器,该估计量可以为所有降级提取歧视性降解表示,而无需依靠降级基础的监督。在本文中,我们提出了一个基于知识蒸馏的盲-SR网络(KDSR)。它由基于知识蒸馏的隐式退化估计器网络(KD-IDE)和有效的SR网络组成。要学习KDSR模型,我们首先训练教师网络:KD-IDE $ _ {T} $。它将配对的HR和LR贴剂作为输入,并通过SR网络共同优化。然后,我们进一步训练学生网络KD-ide $ _ {s} $,该$ _ {s} $仅将LR映像作为输入,并学会提取与KD-ide $ _ {t} $相同的隐式退化表示(IDR)。此外,要完全使用提取的IDR,我们设计了一个简单,强,有效的IDR动态卷积残差块(IDR-DCRB)来构建SR网络。我们在经典和现实世界的退化设置下进行了广泛的实验。结果表明,KDSR实现了SOTA性能,并且可以推广到各种退化过程。源代码和预培训模型将被发布。

Blind image super-resolution (Blind-SR) aims to recover a high-resolution (HR) image from its corresponding low-resolution (LR) input image with unknown degradations. Most of the existing works design an explicit degradation estimator for each degradation to guide SR. However, it is infeasible to provide concrete labels of multiple degradation combinations (e.g., blur, noise, jpeg compression) to supervise the degradation estimator training. In addition, these special designs for certain degradation, such as blur, impedes the models from being generalized to handle different degradations. To this end, it is necessary to design an implicit degradation estimator that can extract discriminative degradation representation for all degradations without relying on the supervision of degradation ground-truth. In this paper, we propose a Knowledge Distillation based Blind-SR network (KDSR). It consists of a knowledge distillation based implicit degradation estimator network (KD-IDE) and an efficient SR network. To learn the KDSR model, we first train a teacher network: KD-IDE$_{T}$. It takes paired HR and LR patches as inputs and is optimized with the SR network jointly. Then, we further train a student network KD-IDE$_{S}$, which only takes LR images as input and learns to extract the same implicit degradation representation (IDR) as KD-IDE$_{T}$. In addition, to fully use extracted IDR, we design a simple, strong, and efficient IDR based dynamic convolution residual block (IDR-DCRB) to build an SR network. We conduct extensive experiments under classic and real-world degradation settings. The results show that KDSR achieves SOTA performance and can generalize to various degradation processes. The source codes and pre-trained models will be released.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源