论文标题
群体2-quasi类别和同型2型
Groupoidal 2-quasi-categories and homotopy 2-types
论文作者
论文摘要
我们定义了gropeoidal 2-quasi类别的概念,并表明它们是$θ_2$ -Set类别上模型结构的原始对象。我们表明,该模型类别与简单集的Kan-Quillen模型类别相等,并且2截断的群体素2-quasi类别是同型2型的模型。
We define a notion of groupoidal 2-quasi-categories and show that they are the fibrant objects of a model structure on the category of $Θ_2$-sets. We show that this model category is Quillen equivalent to the Kan-Quillen model category of simplicial sets and that 2-truncated groupoidal 2-quasi-categories are models for homotopy 2-types.