论文标题
Hecktor 2022的MLC:使用机器学习分析头颈部肿瘤病例时训练数据的效果和重要性
MLC at HECKTOR 2022: The Effect and Importance of Training Data when Analyzing Cases of Head and Neck Tumors using Machine Learning
论文作者
论文摘要
头颈癌是全球第五大癌症,最近提出了对正电子发射断层扫描(PET)和计算机断层扫描(CT)图像的分析,以鉴定预后的患者。尽管结果看起来很有希望,但仍需要进行更多的研究来进一步验证和改善结果。本文介绍了MLC团队为2022版在Miccai 2022举行的Hecktor Grand Challenge所做的工作。对于任务1,自动分割任务,我们的方法与使用3D分割的早期解决方案相反,以使其尽可能简单地使用2D模型,以分析每个单独的单位图像。此外,我们有兴趣了解不同的方式如何影响结果。我们提出了两种方法。一种仅使用CT扫描来进行预测,另一个使用CT和PET扫描的组合。对于任务2(预测无复发生存期的预测),我们首先提出了两种方法,一种方法仅使用患者数据,一种方法将患者数据与图像模型的分割结合在一起。为了预测前两种方法,我们使用了随机森林。在我们的第三种方法中,我们使用XGBoost将患者数据和图像数据组合在一起。肾功能低可能会使癌症预后恶化。因此,在这种方法中,我们估计患者的肾脏功能,并将其作为特征。总体而言,我们得出的结论是,我们的简单方法无法与最高的提交竞争,但我们仍然获得了相当不错的分数。我们还对不同方式的组合如何影响分割和预测有了有趣的见解。
Head and neck cancers are the fifth most common cancer worldwide, and recently, analysis of Positron Emission Tomography (PET) and Computed Tomography (CT) images has been proposed to identify patients with a prognosis. Even though the results look promising, more research is needed to further validate and improve the results. This paper presents the work done by team MLC for the 2022 version of the HECKTOR grand challenge held at MICCAI 2022. For Task 1, the automatic segmentation task, our approach was, in contrast to earlier solutions using 3D segmentation, to keep it as simple as possible using a 2D model, analyzing every slice as a standalone image. In addition, we were interested in understanding how different modalities influence the results. We proposed two approaches; one using only the CT scans to make predictions and another using a combination of the CT and PET scans. For Task 2, the prediction of recurrence-free survival, we first proposed two approaches, one where we only use patient data and one where we combined the patient data with segmentations from the image model. For the prediction of the first two approaches, we used Random Forest. In our third approach, we combined patient data and image data using XGBoost. Low kidney function might worsen cancer prognosis. In this approach, we therefore estimated the kidney function of the patients and included it as a feature. Overall, we conclude that our simple methods were not able to compete with the highest-ranking submissions, but we still obtained reasonably good scores. We also got interesting insights into how the combination of different modalities can influence the segmentation and predictions.