论文标题

分子性质预测的跨模式蒸馏

Coordinating Cross-modal Distillation for Molecular Property Prediction

论文作者

Zhang, Hao, Zhang, Nan, Zhang, Ruixin, Shen, Lei, Zhang, Yingyi, Liu, Meng

论文摘要

近年来,分子图表示学习(GRL)引起了分子性质预测(MPP)问题的更多关注。现有的图形方法表明,对于MPP,3D几何信息对于更好的性能很重要。但是,准确的3D结构通常是昂贵且耗时的,从而限制了GRL的大规模应用。它是一种直观的解决方案,可以训练3D至2D知识蒸馏,仅使用2D输入进行预测。但是,3D至2D蒸馏的一些具有挑战性的问题仍然开放。一个是3D视图与2D视图完全不同,另一个视图是,由于分子大小的可变,蒸馏中原子的梯度幅度不稳定。为了解决这些具有挑战性的问题,我们专门提出了一个包含全球分子蒸馏和局部原子蒸馏的蒸馏框架。我们还提供了理论上的见解,以证明如何协调原子和分子信息,这可以解决可变分子大小的缺点,以供原子信息蒸馏。两个流行分子数据集的实验结果表明,我们提出的模型比其他方法实现了卓越的性能。具体而言,在最大的MPP数据集PCQM4MV2上是图形ML领域的“ ImageNet大规模视觉识别挑战”,与最佳作品相比,提出的方法提高了6.9%。我们在针对OGB-LSC 2022图形回归任务的测试范围内获得了0.0734的MAE,获得了第四名。我们将尽快发布代码。

In recent years, molecular graph representation learning (GRL) has drawn much more attention in molecular property prediction (MPP) problems. The existing graph methods have demonstrated that 3D geometric information is significant for better performance in MPP. However, accurate 3D structures are often costly and time-consuming to obtain, limiting the large-scale application of GRL. It is an intuitive solution to train with 3D to 2D knowledge distillation and predict with only 2D inputs. But some challenging problems remain open for 3D to 2D distillation. One is that the 3D view is quite distinct from the 2D view, and the other is that the gradient magnitudes of atoms in distillation are discrepant and unstable due to the variable molecular size. To address these challenging problems, we exclusively propose a distillation framework that contains global molecular distillation and local atom distillation. We also provide a theoretical insight to justify how to coordinate atom and molecular information, which tackles the drawback of variable molecular size for atom information distillation. Experimental results on two popular molecular datasets demonstrate that our proposed model achieves superior performance over other methods. Specifically, on the largest MPP dataset PCQM4Mv2 served as an "ImageNet Large Scale Visual Recognition Challenge" in the field of graph ML, the proposed method achieved a 6.9% improvement compared with the best works. And we obtained fourth place with the MAE of 0.0734 on the test-challenge set for OGB-LSC 2022 Graph Regression Task. We will release the code soon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源