论文标题
骨关节炎倡议中的骨骼和软骨的自动化异常3D分割
Automated anomaly-aware 3D segmentation of bones and cartilages in knee MR images from the Osteoarthritis Initiative
论文作者
论文摘要
在医学图像分析中,多组分解剖结构的自动分割通常具有潜在的异常和病理,这是一项艰巨的任务。在这项工作中,我们使用基于U-NET的神经网络开发了一种多步进方法,以最初从股骨远端,胫骨近端和ta骨的异常(骨髓病变,骨囊肿)中检测到来自3D磁共振(MR)的膝关节图像的异常级别,患有膝关节的膝关节图像(MR)。随后,提取的数据用于下游任务,涉及单个骨骼和软骨量以及骨异常的语义分割。为了进行异常检测,开发了基于U-NET的模型,以通过插入式的图像中股骨和胫骨的骨谱,以便可以用接近正常的外观代替异常的骨骼区域。重建误差用于检测骨异常。将第二个异常感知网络与无异常的分割网络进行了比较,用于提供对股骨,胫骨和pat骨骨骼的最终自动分割,以及来自膝关节MR图像的软骨,这些MR图像包含一系列骨异常。与无异常分割网络的结果相比,骨分割的Hausdorff距离距离降低了58%的分割方法。此外,与没有异常分段网络(AUC高达0.874)相比,异常感知的网络能够以更高的灵敏度和特异性(接收器操作特征曲线[AUC]最高0.896)检测MR图像中的骨骼病变(接收器操作特征曲线[AUC]最高0.896)。
In medical image analysis, automated segmentation of multi-component anatomical structures, which often have a spectrum of potential anomalies and pathologies, is a challenging task. In this work, we develop a multi-step approach using U-Net-based neural networks to initially detect anomalies (bone marrow lesions, bone cysts) in the distal femur, proximal tibia and patella from 3D magnetic resonance (MR) images of the knee in individuals with varying grades of osteoarthritis. Subsequently, the extracted data are used for downstream tasks involving semantic segmentation of individual bone and cartilage volumes as well as bone anomalies. For anomaly detection, the U-Net-based models were developed to reconstruct the bone profiles of the femur and tibia in images via inpainting so anomalous bone regions could be replaced with close to normal appearances. The reconstruction error was used to detect bone anomalies. A second anomaly-aware network, which was compared to anomaly-naïve segmentation networks, was used to provide a final automated segmentation of the femoral, tibial and patellar bones and cartilages from the knee MR images containing a spectrum of bone anomalies. The anomaly-aware segmentation approach provided up to 58% reduction in Hausdorff distances for bone segmentations compared to the results from the anomaly-naïve segmentation networks. In addition, the anomaly-aware networks were able to detect bone lesions in the MR images with greater sensitivity and specificity (area under the receiver operating characteristic curve [AUC] up to 0.896) compared to the anomaly-naïve segmentation networks (AUC up to 0.874).