论文标题

节点合作的图形卷积网络,用于精确表示无方向的加权图

A Node-collaboration-informed Graph Convolutional Network for Precise Representation to Undirected Weighted Graphs

论文作者

Wang, Ying, Yuan, Ye, Luo, Xin

论文摘要

经常采用无方向的加权图(UWG)来描述来自真实应用程序的单个节点之间的交互,例如社交网络服务系统的用户联系频率。图形卷积网络(GCN)被广泛采用,以对UWG进行表示,以进行随后的模式分析任务,例如聚类或缺少数据估计。但是,现有的GCN主要忽略了隐藏在其连接节点对中的潜在协作信息。为了解决这个问题,本研究建议通过对称潜在因子分析模型对节点协作进行建模,然后将其视为一种节点合作模块,以补充GCN中的协作损失。基于这个想法,提出了三个折叠的想法:a)通过节点合作模块从节点对的相互作用中学习潜在的协作信息; b)建立剩余的连接和加权表示传播以获得高代表能力; c)以端到端方式实施模型优化,以实现目标UWG的精确表示。从实际应用中出现的关于UWG的实证研究表明,由于其有效地融合了节点 - 授权,因此拟议的NGCN在解决缺失权重估计的任务方面明显胜过最先进的GCN。同时,其良好的可扩展性确保了其与更先进的GCN扩展的兼容性,这将在我们未来的研究中进一步研究。

An undirected weighted graph (UWG) is frequently adopted to describe the interactions among a solo set of nodes from real applications, such as the user contact frequency from a social network services system. A graph convolutional network (GCN) is widely adopted to perform representation learning to a UWG for subsequent pattern analysis tasks such as clustering or missing data estimation. However, existing GCNs mostly neglects the latent collaborative information hidden in its connected node pairs. To address this issue, this study proposes to model the node collaborations via a symmetric latent factor analysis model, and then regards it as a node-collaboration module for supplementing the collaboration loss in a GCN. Based on this idea, a Node-collaboration-informed Graph Convolutional Network (NGCN) is proposed with three-fold ideas: a) Learning latent collaborative information from the interaction of node pairs via a node-collaboration module; b) Building the residual connection and weighted representation propagation to obtain high representation capacity; and c) Implementing the model optimization in an end-to-end fashion to achieve precise representation to the target UWG. Empirical studies on UWGs emerging from real applications demonstrate that owing to its efficient incorporation of node-collaborations, the proposed NGCN significantly outperforms state-of-the-art GCNs in addressing the task of missing weight estimation. Meanwhile, its good scalability ensures its compatibility with more advanced GCN extensions, which will be further investigated in our future studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源