论文标题
持续的杯子产品结构和相关的不变性
Persistent Cup Product Structures and Related Invariants
论文作者
论文摘要
一维持续的同源性可以说是拓扑数据分析中最重要且最广泛使用的计算工具。可以通过研究多维持久性模块并利用共同体理念(例如〜共同体杯产品)来从数据集中提取其他信息。 在这项工作中,给定单个参数过滤,我们研究了与持续的同一个同谋相关的某个二维持久模块结构,其中一个参数是杯状$ \ ell \ geq0 $,另一个参数是过滤参数。这种新的持久性结构称为持续的杯模块,由同谋杯产物引起,并适应持久性设置。此外,我们表明这种持久性结构是稳定的。通过修复杯状参数$ \ ell $,我们获得了一个1维持续的模块,称为持久性$ \ ell $ -CUP模块,并再次显示它在交织距离的感觉上是稳定的,并研究了相关的广义持久图。 此外,我们考虑了一个持续不变的广义概念,该概念既扩展了等级不变的(也称为持续性的贝蒂数字),这是Puuska的Puuska的等级不变性,这是由Epi-Mono-Mono-nober-Preservarving to n obel-mono-novervain to n obelian类别的不变性,以及最近定义的持续杯状杯状长度为无效的无效的稳定性。这种持续不变的广义概念也使我们能够将拓扑空间的Lyusternik-Schnirelmann(LS)类别提升为一种新颖的稳定的过滤持续不变式,称为持久性LS类别不变性。
One-dimensional persistent homology is arguably the most important and heavily used computational tool in topological data analysis. Additional information can be extracted from datasets by studying multi-dimensional persistence modules and by utilizing cohomological ideas, e.g.~the cohomological cup product. In this work, given a single parameter filtration, we investigate a certain 2-dimensional persistence module structure associated with persistent cohomology, where one parameter is the cup-length $\ell\geq0$ and the other is the filtration parameter. This new persistence structure, called the persistent cup module, is induced by the cohomological cup product and adapted to the persistence setting. Furthermore, we show that this persistence structure is stable. By fixing the cup-length parameter $\ell$, we obtain a 1-dimensional persistence module, called the persistent $\ell$-cup module, and again show it is stable in the interleaving distance sense, and study their associated generalized persistence diagrams. In addition, we consider a generalized notion of a persistent invariant, which extends both the rank invariant (also referred to as persistent Betti number), Puuska's rank invariant induced by epi-mono-preserving invariants of abelian categories, and the recently-defined persistent cup-length invariant, and we establish their stability. This generalized notion of persistent invariant also enables us to lift the Lyusternik-Schnirelmann (LS) category of topological spaces to a novel stable persistent invariant of filtrations, called the persistent LS-category invariant.