论文标题

跨性别差异几何学的类固醇方法

A groupoid approach to transitive differential geometry

论文作者

Accornero, Luca, Cattafi, Francesco

论文摘要

这项工作是一个正在进行的计划的衍生产品,旨在重新审视现代角度的原始研究对伪群和几何结构的原始研究。我们编码由瞬态谎言伪集团诱导的几何结构中的几何结构中,配备了由$ \ mathfrak {g} $的sibergebra生成的横向平行叶片,称为cartan捆绑包。我们的方法与Arxiv:1911.13147相辅相成,是基于lie lie clopoids的莫里塔等效性。在确定了主要的示例和属性之后,我们就lie代数形成了平坦的概念,该代数涵盖了$ g $结构的经典整合性,cartan几何形状的平坦度以及接触结构的整合性。

This work is a spin-off of an on-going programme which aims at revisiting the original studies of Lie and Cartan on pseudogroups and geometric structures from a modern perspective. We encode geometric structures induced by transitive Lie pseudogroups into principal $G$-bundles equipped with a transversally parallelisable foliation generated by a subalgebra of $\mathfrak{g}$, called Cartan bundles. Our approach is complementary to arXiv:1911.13147 and is based on Morita equivalence of Lie groupoids. After identifying the main examples and properties, we develop a notion of flatness with respect to a Lie algebra, which encompasses the classical integrability of $G$-structures, the flatness of Cartan geometries, as well as the integrability of contact structures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源