论文标题

最差案例优化的自适应方案子集选择及其在井位置优化中的应用

Adaptive Scenario Subset Selection for Worst-Case Optimization and its Application to Well Placement Optimization

论文作者

Miyagi, Atsuhiro, Fukuchi, Kazuto, Sakuma, Jun, Akimoto, Youhei

论文摘要

在这项研究中,我们考虑了基于仿真的最坏情况优化问题,其中包括连续设计变量和有限的场景集。为了减少所需的模拟数量并增加重新启动的局部最佳解决方案的重新启动数,我们提出了一种新方法,称为自适应方案子集选择(AS3)。提出的方法将场景子集用作在给定邻域中构建最坏情况的功能的支持,我们引入了这样的方案子集。此外,我们通过将AS3和称为AS3-CMA-E的AS3和协方差矩阵适应进化策略(CMA-ES)组合来开发新的优化算法。在每种算法迭代中,选择了一个支持方案的子集,并且CMA-ES尝试仅通过方案的一部分计算出最坏的案例目标。所提出的算法减少了仅在方案子集上执行模拟所需的模拟数,而不是在所有方案上。在数值实验中,我们验证了AS3-CMA-ES在模拟数量方面比蛮力方法更有效,而当支持场景数量与场景总数的比率相对较小时,AS3-CMA-ES与Brute-Force方法和替代辅助方法LQ-CMA-E相对较小。另外,评估了AS3-CMA-E的有用性,以优化二氧化碳捕获和存储(CCS)的孔位置优化。与Brute Force方法和LQ-CMA-ES相比,AS3-CMA-Es由于更频繁的重新启动而能够找到更好的解决方案。

In this study, we consider simulation-based worst-case optimization problems with continuous design variables and a finite scenario set. To reduce the number of simulations required and increase the number of restarts for better local optimum solutions, we propose a new approach referred to as adaptive scenario subset selection (AS3). The proposed approach subsamples a scenario subset as a support to construct the worst-case function in a given neighborhood, and we introduce such a scenario subset. Moreover, we develop a new optimization algorithm by combining AS3 and the covariance matrix adaptation evolution strategy (CMA-ES), denoted AS3-CMA-ES. At each algorithmic iteration, a subset of support scenarios is selected, and CMA-ES attempts to optimize the worst-case objective computed only through a subset of the scenarios. The proposed algorithm reduces the number of simulations required by executing simulations on only a scenario subset, rather than on all scenarios. In numerical experiments, we verified that AS3-CMA-ES is more efficient in terms of the number of simulations than the brute-force approach and a surrogate-assisted approach lq-CMA-ES when the ratio of the number of support scenarios to the total number of scenarios is relatively small. In addition, the usefulness of AS3-CMA-ES was evaluated for well placement optimization for carbon dioxide capture and storage (CCS). In comparison with the brute-force approach and lq-CMA-ES, AS3-CMA-ES was able to find better solutions because of more frequent restarts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源