论文标题

估计被动设计下的最小化和回归函数的最小值

Estimating the minimizer and the minimum value of a regression function under passive design

论文作者

Akhavan, Arya, Gogolashvili, Davit, Tsybakov, Alexandre B.

论文摘要

我们提出了一种新方法,用于估计最小化器$ \ boldsymbol {x}^*$以及从随机噪声污染的观测值中平滑且强烈凸回归功能的最小值$ f^*$。我们的估计器$ \ boldsymbol {z} _n $的最小化$ \ boldsymbol {x}^*$基于预计梯度下降的版本,其梯度由正规的本地多项式算法估计。接下来,我们提出了一个两阶段的程序,以估算回归功能的最小值$ f^*$ $ f $。在第一阶段,我们构建了$ \ boldsymbol {x}^*$的足够精确的估计器,例如$ \ boldsymbol {z} _n $。在第二阶段,我们使用速率最佳的非参数过程在第一阶段获得的点估计功能值。我们为二次风险和$ \ boldsymbol {z} _n $的二次风险和优化误差而得出非反应上限,以及估计$ f^*$的风险。我们建立了最小值的下限,表明在某些参数选择下,所提出的算法达到了平滑且强烈凸功能的最小收敛速率。

We propose a new method for estimating the minimizer $\boldsymbol{x}^*$ and the minimum value $f^*$ of a smooth and strongly convex regression function $f$ from the observations contaminated by random noise. Our estimator $\boldsymbol{z}_n$ of the minimizer $\boldsymbol{x}^*$ is based on a version of the projected gradient descent with the gradient estimated by a regularized local polynomial algorithm. Next, we propose a two-stage procedure for estimation of the minimum value $f^*$ of regression function $f$. At the first stage, we construct an accurate enough estimator of $\boldsymbol{x}^*$, which can be, for example, $\boldsymbol{z}_n$. At the second stage, we estimate the function value at the point obtained in the first stage using a rate optimal nonparametric procedure. We derive non-asymptotic upper bounds for the quadratic risk and optimization error of $\boldsymbol{z}_n$, and for the risk of estimating $f^*$. We establish minimax lower bounds showing that, under certain choice of parameters, the proposed algorithms achieve the minimax optimal rates of convergence on the class of smooth and strongly convex functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源