论文标题
设计空间探索和通过有条件的分流自动编码器的说明和基于元模型的行人桥梁设计
Design Space Exploration and Explanation via Conditional Variational Autoencoders in Meta-model-based Conceptual Design of Pedestrian Bridges
论文作者
论文摘要
对于概念设计,工程师依靠常规迭代(通常是手动)技术。新兴参数模型促进了基于可量化的性能指标的设计空间探索,但仍保持耗时且计算昂贵。但是,纯正的优化方法忽略了定性方面(例如美学或构造方法)。本文提供了一个以性能驱动的设计探索框架,可通过有条件的变异自动编码器(CVAE)增强人类设计师,该框架是给定设计功能的前向性能预测指标,以及以一组性能请求为条件的逆设计功能预测指标。 CVAE在瑞士的行人桥的18000个合成实例上进行了培训。敏感性分析用于解释性,并告知设计师(i)特征和/或表现之间的模型关系以及(ii)用户定义的目标下的结构改进。一项案例研究证明了我们框架作为行人桥及以后的概念设计研究的未来共同运动员的潜力。
For conceptual design, engineers rely on conventional iterative (often manual) techniques. Emerging parametric models facilitate design space exploration based on quantifiable performance metrics, yet remain time-consuming and computationally expensive. Pure optimisation methods, however, ignore qualitative aspects (e.g. aesthetics or construction methods). This paper provides a performance-driven design exploration framework to augment the human designer through a Conditional Variational Autoencoder (CVAE), which serves as forward performance predictor for given design features as well as an inverse design feature predictor conditioned on a set of performance requests. The CVAE is trained on 18'000 synthetically generated instances of a pedestrian bridge in Switzerland. Sensitivity analysis is employed for explainability and informing designers about (i) relations of the model between features and/or performances and (ii) structural improvements under user-defined objectives. A case study proved our framework's potential to serve as a future co-pilot for conceptual design studies of pedestrian bridges and beyond.