论文标题

稳定的毛细血管高空曲面和径向重量的球中的分区问题

Stable capillary hypersurfaces and the partitioning problem in balls with radial weights

论文作者

Rosales, César

论文摘要

在一个圆球$ b \ subset \ mathbb {r}^{n+1} $中,带有$ o(n+1)$ - 不变度度量,我们考虑了一个重量和区域的径向函数。我们证明,$ b $中的紧凑型双面超脸,这在加权意义上是稳定的毛细血管,并且对一条包含$ b $的中心的一线对称是同型$ n $二维磁盘。当与hsiang对称和其他稳定性结果结合使用时,可以推断出高斯重量$ b $中任何等等区域的内部边界是革命的$ n $ disk。对于$ n = 2 $,我们还表明,在$ b $ of属0的$ b $中,紧凑的加权稳定毛细管表面是革命的封闭磁盘。

In a round ball $B\subset\mathbb{R}^{n+1}$ endowed with an $O(n+1)$-invariant metric we consider a radial function that weights volume and area. We prove that a compact two-sided hypersurface in $B$ which is stable capillary in weighted sense and symmetric about some line containing the center of $B$ is homeomorphic to a closed $n$-dimensional disk. When combined with Hsiang symmetrization and other stability results this allows to deduce that the interior boundary of any isoperimetric region in $B$ for the Gaussian weight is a closed $n$-disk of revolution. For $n=2$ we also show that a compact weighted stable capillary surface in $B$ of genus 0 is a closed disk of revolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源