论文标题
参数估计,椭圆形和低纤维化扩散的精度提高
Parameter Estimation with Increased Precision for Elliptic and Hypo-elliptic Diffusions
论文作者
论文摘要
这项工作旨在在离散观察到的扩散过程中为参数推断的一般领域做出全面贡献。建立的基于似然估计的方法调用了一个时间限制方案,用于在有限的时间段内近似随机微分方程(SDE)模型的棘手过渡动力学。该方案适用于用户选择或由数据确定的步进大小。最近的研究强调了数值方案选择的关键EF-FECT在低纤维化SDES设置中的衍生参数估计值中的行为。简而言之,首先,我们开发了两个弱的二阶采样方案(涵盖低纤维素和椭圆形SDE),并为该方案的密度产生较小的时间膨胀,以形成真正棘手的SDE过渡密度的代理。然后,我们为通过形成的代理获得的基于似然的参数估计值建立了分析结果的集合,从而提供了一个理论框架,从使用开发的SDE校准方法来展示优势。我们为椭圆形和低纤维性SDE提供了经典或贝叶斯推断的数值结果。
This work aims at making a comprehensive contribution in the general area of parametric inference for discretely observed diffusion processes. Established approaches for likelihood-based estimation invoke a time-discretisation scheme for the approximation of the intractable transition dynamics of the Stochastic Differential Equation (SDE) model over finite time periods. The scheme is applied for a step-size that is either user-selected or determined by the data. Recent research has highlighted the critical ef-fect of the choice of numerical scheme on the behaviour of derived parameter estimates in the setting of hypo-elliptic SDEs. In brief, in our work, first, we develop two weak second order sampling schemes (to cover both hypo-elliptic and elliptic SDEs) and produce a small time expansion for the density of the schemes to form a proxy for the true intractable SDE transition density. Then, we establish a collection of analytic results for likelihood-based parameter estimates obtained via the formed proxies, thus providing a theoretical framework that showcases advantages from the use of the developed methodology for SDE calibration. We present numerical results from carrying out classical or Bayesian inference, for both elliptic and hypo-elliptic SDEs.