论文标题

中性原子量子处理器上的图形机学习的量子特征图

Quantum Feature Maps for Graph Machine Learning on a Neutral Atom Quantum Processor

论文作者

Albrecht, Boris, Dalyac, Constantin, Leclerc, Lucas, Ortiz-Gutiérrez, Luis, Thabet, Slimane, D'Arcangelo, Mauro, Elfving, Vincent E., Lassablière, Lucas, Silvério, Henrique, Ximenez, Bruno, Henry, Louis-Paul, Signoles, Adrien, Henriet, Loïc

论文摘要

使用量子处理器嵌入和处理经典数据,可以通过经典计算来表示变量之间的相关性产生。一个基本的问题是,是否可以利用这些相关性来增强实际数据集的学习表现。在这里,我们报告了中性原子量子处理器的使用,该处理器最多包含$ 32 $ QUBITS,以在图形结构化数据上实现机器学习任务。为此,我们引入了一个量子特征映射,以编码可调式汉密尔顿的参数中有关图形的信息,该参数作用于一系列Qubits。使用此工具,我们首先证明量子系统中的相互作用可用于区分局部等效的非同形图。然后,我们实现了一个毒性筛查实验,该实验由生物化学数据集的二进制分类协议组成,其中包括$ 286 $的尺寸分子,范围从$ 2 $到$ 32 $ nodes,并获得与使用最佳古典核的结果相当的结果。使用技术比较与内核方法关联的特征空间的几何形状,然后我们展示了量子特征图以原始方式感知数据的证据,这很难使用经典内核复制。

Using a quantum processor to embed and process classical data enables the generation of correlations between variables that are inefficient to represent through classical computation. A fundamental question is whether these correlations could be harnessed to enhance learning performances on real datasets. Here, we report the use of a neutral atom quantum processor comprising up to $32$ qubits to implement machine learning tasks on graph-structured data. To that end, we introduce a quantum feature map to encode the information about graphs in the parameters of a tunable Hamiltonian acting on an array of qubits. Using this tool, we first show that interactions in the quantum system can be used to distinguish non-isomorphic graphs that are locally equivalent. We then realize a toxicity screening experiment, consisting of a binary classification protocol on a biochemistry dataset comprising $286$ molecules of sizes ranging from $2$ to $32$ nodes, and obtain results which are comparable to those using the best classical kernels. Using techniques to compare the geometry of the feature spaces associated with kernel methods, we then show evidence that the quantum feature map perceives data in an original way, which is hard to replicate using classical kernels.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源