论文标题
抛物线射击符号/正交希格斯束的光谱数据
Spectral data for parabolic projective symplectic/orthogonal Higgs bundles
论文作者
论文摘要
希钦(Duke Math)中的希钦(Hitchin) J. 54(1),91-114(1987)]从Moduli稳定空间$ G $ -HIGGS捆绑包中引入了适当的形态($ g = \ MATHRM {GLM {GL}(N,\ Mathbb {C}),\ Mathrm {sp} $ \ mathrm {so}(n,\ mathbb {c})$上的曲线到不变多项式的向量空间,他描述了这种形态的通用纤维。在本文中,我们首先描述了稳定的抛物线射击式象征性/正交Higgs捆绑的模量空间的通用hitchin纤维,而无需固定决定因素。我们还描述了确定剂微不足道时的通用纤维。
Hitchin in [Duke Math. J. 54 (1), 91-114 (1987)] introduced a proper morphism from the moduli space of stable $G$-Higgs bundles ($G=\mathrm{GL}(n,\mathbb{C}),\mathrm{Sp}(2m,\mathbb{C})$ and $\mathrm{SO}(n,\mathbb{C})$) over a curve to a vector space of invariant polynomials and he described the generic fibers of that morphism. In this paper, we first describe the generic Hitchin fibers for the moduli space of stable parabolic projective symplectic/orthogonal Higgs bundles without fixing the determinant. We also describe the generic fibers when the determinant is trivial.