论文标题
小心旋转:3D形状的均匀后门图案
Be Careful with Rotation: A Uniform Backdoor Pattern for 3D Shape
论文作者
论文摘要
为了节省成本,许多深神经网络(DNN)在从Internet下载的第三方数据集上进行了培训,这使攻击者可以将后门植入DNNS。在2D域中,不同图像格式的固有结构相似。因此,为一种图像格式设计的后门攻击将为其他图像格式提供套件。但是,当涉及到3D世界时,不同的3D数据结构之间存在巨大差异。结果,为一个特定3D数据结构设计的后门模式将用于同一3D场景的其他数据结构。因此,本文设计了一个均匀的后门模式:NRBDoor(嘈杂的旋转后门),能够适应异质的3D数据结构。具体而言,我们从单元旋转开始,然后通过噪声产生和选择过程搜索最佳模式。提出的NRBDOOR是自然且无法察觉的,因为旋转是一个常见的操作,通常由于一对点之间的错过匹配以及现实世界中3D场景的传感器校准误差而造成的噪声。在3D网格和点云上进行的广泛实验表明,所提出的NRBDOOR实现了最先进的性能,形状可忽略不计。
For saving cost, many deep neural networks (DNNs) are trained on third-party datasets downloaded from internet, which enables attacker to implant backdoor into DNNs. In 2D domain, inherent structures of different image formats are similar. Hence, backdoor attack designed for one image format will suite for others. However, when it comes to 3D world, there is a huge disparity among different 3D data structures. As a result, backdoor pattern designed for one certain 3D data structure will be disable for other data structures of the same 3D scene. Therefore, this paper designs a uniform backdoor pattern: NRBdoor (Noisy Rotation Backdoor) which is able to adapt for heterogeneous 3D data structures. Specifically, we start from the unit rotation and then search for the optimal pattern by noise generation and selection process. The proposed NRBdoor is natural and imperceptible, since rotation is a common operation which usually contains noise due to both the miss match between a pair of points and the sensor calibration error for real-world 3D scene. Extensive experiments on 3D mesh and point cloud show that the proposed NRBdoor achieves state-of-the-art performance, with negligible shape variation.