论文标题
佩斯金品种的合理性
Rationality of peskine varieties
论文作者
论文摘要
我们研究了p^9中佩斯金六倍的合理性。我们证明了佩斯金d^{3,3,10}在佩斯金六倍的模量空间内的佩斯金六倍的合理性,我们提供了共生条件,可确保Divisor divisor六倍在Divisor d^{1,6,10}(1,6,10}(notation notation notation bs nofe)中的合理性。我们猜想,与包含一个平面的立方四倍一样,我们的共同体条件转化为涉及与佩斯金六倍相关的debarre-voissin hyperk {ä} hler hler四倍。
We study the rationality of the Peskine sixfolds in P^9. We prove the rationality of the Peskine sixfolds in the divisor D^{3,3,10} inside the moduli space of Peskine sixfolds and we provide a cohomological condition which ensures the rationality of the Peskine sixfolds in the divisor D^{1,6,10} (notation from [BS]). We conjecture, as in the case of cubic fourfolds containing a plane, that the cohomological condition translates into a cohomological and geometric condition involving the Debarre-Voisin hyperk{ä}hler fourfold associated to the Peskine sixfold.