论文标题
G-CMP:基于传感器的远程健康监控中无监督异常检测的图形增强上下文矩阵配置文件
G-CMP: Graph-enhanced Contextual Matrix Profile for unsupervised anomaly detection in sensor-based remote health monitoring
论文作者
论文摘要
基于传感器的远程健康监测用于工业,城市和医疗保健环境中,以监视设备和人类健康的正在进行的操作。一个重要的目的是如果检测到异常事件或不良健康,请尽早干预。在野外,这些异常检测方法受到噪音,标签稀缺,高维度,解释性和操作环境中广泛的可变性的挑战。上下文矩阵配置文件(CMP)是矩阵配置文件(MP)的可配置的二维版本,该版本使用时间序列的所有子序列的距离矩阵来发现模式和异常。证明CMP可以增强MP和其他SOTA方法在检测,可视化和解释来自不同领域的嘈杂现实世界数据中的真实异常方面的有效性。它在缩小和识别可配置时间尺度的时间模式方面表现出色。但是,CMP不能解决跨传感器信息,也无法扩展到高维数据。我们提出了一种用于时间异常检测的新型,自我监督的基于图的方法,该方法可在CMP距离矩阵生成的上下文图上起作用。学习的图形嵌入式编码时间上下文的异常性。此外,我们为同一任务评估了其他图形离群算法。鉴于我们的管道是模块化的,图形结构,图形嵌入的生成,并且可以根据特定的模式检测应用选择模式识别逻辑。我们验证了基于图的异常检测的有效性,并将其与CMP和三种具有不同异常的实际医疗保健数据集的最新方法进行了比较。我们提出的方法显示出更好的召回,警报率和普遍性。
Sensor-based remote health monitoring is used in industrial, urban and healthcare settings to monitor ongoing operation of equipment and human health. An important aim is to intervene early if anomalous events or adverse health is detected. In the wild, these anomaly detection approaches are challenged by noise, label scarcity, high dimensionality, explainability and wide variability in operating environments. The Contextual Matrix Profile (CMP) is a configurable 2-dimensional version of the Matrix Profile (MP) that uses the distance matrix of all subsequences of a time series to discover patterns and anomalies. The CMP is shown to enhance the effectiveness of the MP and other SOTA methods at detecting, visualising and interpreting true anomalies in noisy real world data from different domains. It excels at zooming out and identifying temporal patterns at configurable time scales. However, the CMP does not address cross-sensor information, and cannot scale to high dimensional data. We propose a novel, self-supervised graph-based approach for temporal anomaly detection that works on context graphs generated from the CMP distance matrix. The learned graph embeddings encode the anomalous nature of a time context. In addition, we evaluate other graph outlier algorithms for the same task. Given our pipeline is modular, graph construction, generation of graph embeddings, and pattern recognition logic can all be chosen based on the specific pattern detection application. We verified the effectiveness of graph-based anomaly detection and compared it with the CMP and 3 state-of-the art methods on two real-world healthcare datasets with different anomalies. Our proposed method demonstrated better recall, alert rate and generalisability.