论文标题
基于计时的反向传播在无单尖峰限制的尖峰神经网络中
Timing-Based Backpropagation in Spiking Neural Networks Without Single-Spike Restrictions
论文作者
论文摘要
我们提出了一种用于训练尖峰神经网络(SNNS)的新型反向传播算法,该算法在没有单个尖峰限制的情况下编码单个神经元的相对多个尖峰时机中的信息。所提出的算法继承了基于常规时序的方法的优势,因为它计算出相对于尖峰时序的准确梯度,从而促进了理想的时间编码。与传统的方法不同,每个神经元最多一次发射一次,提出的算法允许每个神经元发射多次。该扩展自然改善了SNN的计算能力。我们的SNN模型的表现优于可比的SNN模型,并且与非跨方向性人工神经网络一样高准确性。根据突触后电流和膜电位的时间常数,我们网络的尖峰计数属性发生了变化。此外,我们发现存在最佳测试精度的最佳时间常数。这在传统的SNN中没有看到,该SNN具有单峰值限制的时间速度尖峰(TTFS)编码。该结果证明了SNN的计算特性,该SNN将信息编码为单个神经元的多尖峰时序。我们的代码将公开可用。
We propose a novel backpropagation algorithm for training spiking neural networks (SNNs) that encodes information in the relative multiple spike timing of individual neurons without single-spike restrictions. The proposed algorithm inherits the advantages of conventional timing-based methods in that it computes accurate gradients with respect to spike timing, which promotes ideal temporal coding. Unlike conventional methods where each neuron fires at most once, the proposed algorithm allows each neuron to fire multiple times. This extension naturally improves the computational capacity of SNNs. Our SNN model outperformed comparable SNN models and achieved as high accuracy as non-convolutional artificial neural networks. The spike count property of our networks was altered depending on the time constant of the postsynaptic current and the membrane potential. Moreover, we found that there existed the optimal time constant with the maximum test accuracy. That was not seen in conventional SNNs with single-spike restrictions on time-to-fast-spike (TTFS) coding. This result demonstrates the computational properties of SNNs that biologically encode information into the multi-spike timing of individual neurons. Our code would be publicly available.