论文标题
用帕德近近似值探测Landau-gauge传播器的奇异性
Probing singularities of Landau-gauge propagators with Padé approximants
论文作者
论文摘要
使用PADé近似值来研究红外线制度中四维SU(2)Landau-gauge Gluon和幽灵传播器的分析结构。独立模型的近似值被用作传播器的晶格数据的拟合函数,由于拟合过程而仔细地繁殖不确定性并考虑了所有可能的相关性。 Applying this procedure systematically to the gluon-propagator data, we observe the presence of a pair of complex poles at $p^2_{\mathrm{pole}} = (-0.37 \pm 0.05_{\mathrm{stat}} \pm 0.08_{\mathrm{sys}}) \pm \, i\, (0.66 \ pm 0.03 _ {\ Mathrm {Stat}}} \ pm 0.02 _ {\ MathRM {sys}})\,\ Mathrm {gev}^2 $,其中`我们还发现$ p^2 $的负真实轴,$ p^2 _ {\ mathrm {Zero}} =(-2.9 \ pm 0.4 _ {\ mathrm {stat}}} \ pm pm 0.9 _ {\ pm 0.9 _ {\ mathrm {sys}}}})因此,我们注意到,我们的过程 - 基于独立于模型的方法并包括仔细的错误传播 - 证实了与以前的工作一致的Gluon传播器中的一对复杂杆。对于幽灵传播器,帕德斯指示单极在$ p^2 = 0 $,如预期的。我们还发现了在负实际轴上切断分支的证据。通过使用所谓的D-logPadé方法,该方法旨在用剪切近似函数,我们证实了幽灵传播器的这种切割的存在。
Padé approximants are employed in order to study the analytic structure of the four-dimensional SU(2) Landau-gauge gluon and ghost propagators in the infrared regime. The approximants, which are model independent, are used as fitting functions to lattice data for the propagators, carefully propagating uncertainties due to the fit procedure and taking into account all possible correlations. Applying this procedure systematically to the gluon-propagator data, we observe the presence of a pair of complex poles at $p^2_{\mathrm{pole}} = (-0.37 \pm 0.05_{\mathrm{stat}} \pm 0.08_{\mathrm{sys}}) \pm \, i\, (0.66 \pm 0.03_{\mathrm{stat}} \pm 0.02_{\mathrm{sys}}) \, \mathrm{GeV}^2$, where ``stat'' represents the statistical error and ``sys'' the systematic one. We also find a zero on the negative real axis of $p^2$, at $p^2_{\mathrm{zero}} = (-2.9 \pm 0.4_{\mathrm{stat}} \pm 0.9_{\mathrm{sys}}) \, \mathrm{GeV}^2$. We thus note that our procedure -- which is based on a model-independent approach and includes careful error propagation -- confirms the presence of a pair of complex poles in the gluon propagator, in agreement with previous works. For the ghost propagator, the Padés indicate the existence of the single pole at $p^2 = 0$, as expected. We also find evidence of a branch cut on the negative real axis. Through the use of the so-called D-Log Padé method, which is designed to approximate functions with cuts, we corroborate the existence of this cut for the ghost propagator.