论文标题
基于视频的呼吸监测的运动放大算法
Motion Magnification Algorithms for Video-Based Breathing Monitoring
论文作者
论文摘要
在本文中,我们提出了两种视频处理技术,用于对框架受试者的呼吸率(RR)的无接触式估计。由于婴儿和成人的呼吸相关的运动范围适中,需要有效检测呼吸的特定算法。因此,利用与运动相关的视频信号变化以确定受监测患者的呼吸,并随着时间的推移同时估计RR。我们的估计方法依赖于两种运动放大算法,这些算法被利用来增强与呼吸相关的细微运动。特别是,用于运动放大的振幅和基于阶段的算法被认为是提取可靠的运动信号。提出的估计系统既执行视频框架的空间分解,并结合适当的时间过滤以提取呼吸信息。提取并共同分析周期性(或准周期性)呼吸信号后,我们应用最大可能性(ML)标准来估计基本频率,与RR相对应。首先通过与参考数据进行比较评估所提出的方法的性能。测试了框架不同主题(即新生儿和成人)的视频。最后,两种方法的RR估计精度均以归一化的根平方误差(RMSE)来衡量。
In this paper, we present two video processing techniques for contact-less estimation of the Respiratory Rate (RR) of framed subjects. Due to the modest extent of movements related to respiration in both infants and adults, specific algorithms to efficiently detect breathing are needed. For this reason, motion-related variations in video signals are exploited to identify respiration of the monitored patient and simultaneously estimate the RR over time. Our estimation methods rely on two motion magnification algorithms that are exploited to enhance the subtle respiration-related movements. In particular, amplitude- and phase-based algorithms for motion magnification are considered to extract reliable motion signals. The proposed estimation systems perform both spatial decomposition of the video frames combined with proper temporal filtering to extract breathing information. After periodic (or quasi-periodic) respiratory signals are extracted and jointly analysed, we apply the Maximum Likelihood (ML) criterion to estimate the fundamental frequency, corresponding to the RR. The performance of the presented methods is first assessed by comparison with reference data. Videos framing different subjects, i.e., newborns and adults, are tested. Finally, the RR estimation accuracy of both methods is measured in terms of normalized Root Mean Squared Error (RMSE).