论文标题

mmwave映射和猛击5G及以后

MmWave Mapping and SLAM for 5G and Beyond

论文作者

Ge, Yu, Kaltiokallio, Ossi, Kim, Hyowon, Talvitie, Jukka, Kim, Sunwoo, Svensson, Lennart, Valkama, Mikko, Wymeersch, Henk

论文摘要

设备定位和类似雷达的映射是集成感应和通信的核心,不仅可以新的服务和应用程序,而且还可以通过减少的开销来提高通信质量。但是,由于测量与检测到的对象或目标之间的关系不明,这些传感形式易受数据关联问题的影响。在本章中,我们概述了用于解决映射,跟踪以及同时本地化和映射(SLAM)问题的基本工具。我们区分不同类型的传感问题,然后专注于映射和猛击作为运行示例。从适用的模型和定义开始,我们描述了不同的算法方法,特别关注如何处理数据关联问题。特别是,详细介绍了基于随机有限集理论和贝叶斯图形模型的方法。然后,使用合成和实验数据的数值研究来比较各种情况下的这些方法。

Device localization and radar-like mapping are at the heart of integrated sensing and communication, enabling not only new services and applications, but can also improve communication quality with reduced overheads. These forms of sensing are however susceptible to data association problems, due to the unknown relation between measurements and detected objects or targets. In this chapter, we provide an overview of the fundamental tools used to solve mapping, tracking, and simultaneous localization and mapping (SLAM) problems. We distinguish the different types of sensing problems and then focus on mapping and SLAM as running examples. Starting from the applicable models and definitions, we describe the different algorithmic approaches, with a particular focus on how to deal with data association problems. In particular, methods based on random finite set theory and Bayesian graphical models are introduced in detail. A numerical study with synthetic and experimental data is then used to compare these approaches in a variety of scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源