论文标题

等距和等级NRSFM的凸松弛

Convex Relaxations for Isometric and Equiareal NRSfM

论文作者

Sengupta, Agniva, Bartoli, Adrien

论文摘要

由于缺乏足够约束的点云模型,可扩展的对象构成了NRSFM的具有挑战性的情况。我们通过提出的1)凸模模型来应对挑战,直到准时为准,以及2)涉及ekiareal变形模型的凸松弛,该模型保留了局部区域,尚未在NRSFM中使用。等级模型具有吸引力,因为它在物理上是合理的并且广泛适用。但是,它有两个主要的困难:首先,当自行使用时,它是模棱两可的,其次,它涉及四分音,因此高度非凸,约束。我们的方法通过将epiareal与等距模型混合以及新的凸松弛度的第二个难度来处理第一个困难。我们验证了多个真实和合成数据的方法,包括众所周知的基准测试。

Extensible objects form a challenging case for NRSfM, owing to the lack of a sufficiently constrained extensible model of the point-cloud. We tackle the challenge by proposing 1) convex relaxations of the isometric model up to quasi-isometry, and 2) convex relaxations involving the equiareal deformation model, which preserves local area and has not been used in NRSfM. The equiareal model is appealing because it is physically plausible and widely applicable. However, it has two main difficulties: first, when used on its own, it is ambiguous, and second, it involves quartic, hence highly nonconvex, constraints. Our approach handles the first difficulty by mixing the equiareal with the isometric model and the second difficulty by new convex relaxations. We validate our methods on multiple real and synthetic data, including well-known benchmarks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源