论文标题

椭圆形和抛物线双相方程的渐近平均值特性

Asymptotic mean value properties for the elliptic and parabolic double phase equations

论文作者

Meng, Weili, Zhang, Chao

论文摘要

我们在粘度意义上表征了双相椭圆方程$$ - {\ rm div}(\ lvert \ nabla u \ rvert^{p-2} \ nabla u+ a(x) u_t = \ lvert \ nabla u \ rvert^{2-p} {\ rm div}(\ lvert \ nabla u \ rvert^{p-2} \ nabla u+ a(x,x,x,x,x,t) $$这是这种不均匀椭圆形和抛物线方程的第一个平均值结果。此外,获得的结果也可以应用于$ p(x)$ - 拉普拉斯方程和可变系数$ p $ -laplace类型方程。

We characterize an asymptotic mean value formula in the viscosity sense for the double phase elliptic equation $$ -{\rm div}(\lvert \nabla u \rvert^{p-2}\nabla u+ a(x)\lvert\nabla u \rvert^{q-2}\nabla u)=0 $$ and the normalized double phase parabolic equation $$ u_t=\lvert\nabla u \rvert ^{2-p}{\rm div}(\lvert \nabla u \rvert^{p-2}\nabla u+ a(x,t)\lvert\nabla u \rvert^{q-2}\nabla u), \quad 1<p\leq q<\infty. $$ This is the first mean value result for such kind of nonuniformly elliptic and parabolic equations. In addition, the results obtained can also be applied to the $p(x)$-Laplace equations and the variable coefficient $p$-Laplace type equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源