论文标题
尘埃运动和灰尘生长的可能性在不断增长的情况下
Dust Motion and Possibility of Dust Growth in a Growing Circumstellar Disk
论文作者
论文摘要
我们使用三维电阻磁性水力动力学模拟来计算恒星形成的云芯的演变,将粉尘晶粒视为拉格朗日颗粒,以研究早期恒星形成阶段的灰尘运动。我们准备了六个不同尺寸的灰尘颗粒,范围内$ a _ {\ rm d} = 0.01 $ - $ 1000 \,μ$ m,其中$ a _ {\ rm d} $是灰尘粒度。在重力崩溃的云中,围绕原恒星形成杂质磁盘,并驱动原恒星流出。几乎所有的小尘土谷物($ a _ {\ rm d} \ Lessim 10 $ - $ 100 \,μ$ m)最初在该区域中分布在$θ_0\ simsim 45^\ circ $从中心从中心弹出,而流出则是$θ_0$的最初的尘埃,而大尘是相对于腐烂轴的最初的尘埃,而不是数字。 ($ a _ {\ rm d} \ gtrsim 100 \,μ$ m)被弹出。所有其他谷物都落在原始的磁盘上或磁盘上,而不会被流出弹出。无论灰尘粒度的大小如何,灰尘颗粒沉降到偶性磁盘后,灰尘运动的行为都会分为两个趋势。从上部包膜到达内部磁盘区域的灰尘晶粒优先落在原恒星上,而到达外盘区域或从包膜的磁盘外边缘的粉尘颗粒可以生存而无需向内径向漂移。这些幸存的谷物会诱导尘埃生长。因此,我们预计外部磁盘区域可能是行星形成的最受欢迎的地方。
We calculate the evolution of a star-forming cloud core using a three-dimensional resistive magnetohydrodynamics simulation, treating dust grains as Lagrangian particles, to investigate the dust motion in the early star formation stage. We prepare six different-sized set of dust particles in the range $a_{\rm d}=0.01$--$1000\,μ$m, where $a_{\rm d}$ is the dust grain size. In a gravitationally collapsing cloud, a circumstellar disk forms around a protostar and drives a protostellar outflow. Almost all the small dust grains ($a_{\rm d} \lesssim 10$--$100\,μ$m) initially distributed in the region $θ_0 \lesssim 45^\circ$ are ejected from the center by the outflow, where $θ_0$ is the initial zenith angle relative to the rotation axis, whereas only a small number of the large dust grains ($a_{\rm d} \gtrsim 100\,μ$m) distributed in the region are ejected. All other grains fall onto either the protostar or disk without being ejected by the outflow. Regardless of the dust grain size, the behavior of the dust motion is divided into two trends after dust particles settle into the circumstellar disk. The dust grains reaching the inner disk region from the upper envelope preferentially fall onto the protostar, while those reaching the outer disk region or disk outer edge from the envelope can survive without an inward radial drift. These surviving grains can induce dust growth. Thus, we expect that the outer disk regions could be a favored place of planet formation.