论文标题

PYHF:带有张量和自动差异的历史悠久的纯净python实施

pyhf: pure-Python implementation of HistFactory with tensors and automatic differentiation

论文作者

Feickert, Matthew, Heinrich, Lukas, Stark, Giordon

论文摘要

历史记录P.D.F.模板独立于其在根中的实现,并且能够在根,屋顶,栖息地框架之外运行统计分析很有用。 PYHF是基于多键直方图分析的该统计模型的纯粹实现,其间隔估计基于“基于可能基于可能的新物理学的可能性测试”的“渐近公式”的渐近公式。 PYHF支持现代计算图库,例如TensorFlow,Pytorch和Jax,以利用自动差异和GPU加速度等功能。此外,针对Histfactory模型的PYHF的JSON序列化规范已用于将已发布的ATLAS协作分析分析的23个完整概率模型发布到HEPDATA。

The HistFactory p.d.f. template is per-se independent of its implementation in ROOT and it is useful to be able to run statistical analysis outside of the ROOT, RooFit, RooStats framework. pyhf is a pure-Python implementation of that statistical model for multi-bin histogram-based analysis and its interval estimation is based on the asymptotic formulas of "Asymptotic formulae for likelihood-based tests of new physics". pyhf supports modern computational graph libraries such as TensorFlow, PyTorch, and JAX in order to make use of features such as auto-differentiation and GPU acceleration. In addition, pyhf's JSON serialization specification for HistFactory models has been used to publish 23 full probability models from published ATLAS collaboration analyses to HEPData.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源