论文标题

了解对抗性鲁棒性对准确性差异的影响

Understanding the Impact of Adversarial Robustness on Accuracy Disparity

论文作者

Hu, Yuzheng, Wu, Fan, Zhang, Hongyang, Zhao, Han

论文摘要

虽然长期以来一直在经验上观察到,对抗性的鲁棒性可能与标准准确性相反,并且可能对不同类别产生不同的影响,但这种观察结果在多大程度上仍然是一个悬而未决的问题,以及类别的失衡如何在内部发挥作用。在本文中,我们试图通过仔细研究高斯混合模型下的线性分类器来理解这个准确性差异的问题。我们将对抗性鲁棒性的影响分解为两个部分:固有的效果,它将由于鲁棒性约束而降低所有类别的标准准确性,而另一个由类别不平衡比率引起的,这将增加与标准培训相比的准确性差异。此外,我们还表明,通过将我们的数据模型推广到稳定分布的一般家族,我们还表明,这种效应范围超出了高斯混合模型。更具体地说,我们证明,尽管对抗性鲁棒性的限制始终降低平衡类设置中的标准准确性,但由于稳定分布的较重的尾巴,阶级不平衡比与高斯案例相比在准确性差异中起着根本不同的作用。我们还对合成数据集和现实数据集进行实验,以证实我们的理论发现。我们的经验结果还表明,这些影响可能扩展到实际数据集上的非线性模型。我们的代码可在https://github.com/accuracy-disparity/at-on--ad上公开获得。

While it has long been empirically observed that adversarial robustness may be at odds with standard accuracy and may have further disparate impacts on different classes, it remains an open question to what extent such observations hold and how the class imbalance plays a role within. In this paper, we attempt to understand this question of accuracy disparity by taking a closer look at linear classifiers under a Gaussian mixture model. We decompose the impact of adversarial robustness into two parts: an inherent effect that will degrade the standard accuracy on all classes due to the robustness constraint, and the other caused by the class imbalance ratio, which will increase the accuracy disparity compared to standard training. Furthermore, we also show that such effects extend beyond the Gaussian mixture model, by generalizing our data model to the general family of stable distributions. More specifically, we demonstrate that while the constraint of adversarial robustness consistently degrades the standard accuracy in the balanced class setting, the class imbalance ratio plays a fundamentally different role in accuracy disparity compared to the Gaussian case, due to the heavy tail of the stable distribution. We additionally perform experiments on both synthetic and real-world datasets to corroborate our theoretical findings. Our empirical results also suggest that the implications may extend to nonlinear models over real-world datasets. Our code is publicly available on GitHub at https://github.com/Accuracy-Disparity/AT-on-AD.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源