论文标题

使用复杂的吸收电位分析和优化共振能和宽度

Analysis and Optimization of Resonance Energies and Widths Using Complex Absorbing Potentials

论文作者

Gyamfi, Jerryman A., Jagau, Thomas -C.

论文摘要

复杂的吸收电位(CAP)是添加到电子哈密顿量中的人造电势,以使亚稳态电子状态的波函数可伸缩。这使电子共振的电子结构问题与电子结合状态的问题相当,从而降低了问题的复杂性。上限取决于两种类型的参数:耦合参数$η$和一组空间参数,这些空间参数定义了CAP的开始。多年来,通过运行$η-$轨迹来最大程度地减少物理电子汉密尔顿的帽扰动,这是一种普遍的做法,从而固定空间参数并变化$η$。根据最小日志标准选择最佳$η$。但是$η-$轨迹的有效性很大程度上取决于固定空间参数的值。 在这项工作中,我们提出了一个更通用的标准,称为$ξ-$标准,它允许人们最大程度地减少任何CAP参数,包括CAP空间参数。确实,我们表明,修复$η$并根据方案(即运行空间轨迹)改变空间参数是一种更有效,更可靠的方法,可以最大程度地减少CAP扰动(使用$ξ-$ criterion评估)。我们使用两种不同类型的盖子:盒子和光滑的voronoi-caps来确定DINTROGON,HARTREE-FOCK和EOM-EA-CCSD水平的Din氮的共振能量和临时阴离子的共振能量和宽度来说明该方法。

Complex absorbing potentials (CAPs) are artificial potentials added to electronic Hamiltonians to make the wavefunction of metastable electronic states square-integrable. This makes the electronic structure problem of electronic resonances comparable to that of electronic bound states, thus reducing the complexity of the problem. CAPs depend on two types of parameters: the coupling parameter $η$ and a set of spatial parameters which define the onset of the CAP. It has been a common practice over the years to minimize the CAP perturbation on the physical electronic Hamiltonian by running an $η-$trajectory, whereby one fixes the spatial parameters and varies $η$. The optimal $η$ is chosen according to the minimum log-velocity criterion. But the effectiveness of an $η-$trajectory strongly depends on the values of the fixed spatial parameters. In this work, we propose a more general criterion, called the $ξ-$criterion, which allows one to minimize any CAP parameter, including the CAP spatial parameters. Indeed, we show that fixing $η$ and varying the spatial parameters according to a scheme (i.e., running a spatial trajectory) is a more efficient and reliable way of minimizing the CAP perturbations (which is assessed using the $ξ-$criterion). We illustrate the method by determining the resonance energy and width of the temporary anion of dinitrogen, at the Hartree-Fock and EOM-EA-CCSD levels, using two different types of CAPs: the box- and the smooth Voronoi-CAPs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源