论文标题

配对比较数据的ROC分析

ROC Analysis for Paired Comparison Data

论文作者

Huo, Ran, Glickman, Mark E.

论文摘要

配对比较模型用于分析涉及一组对象之间成对比较的数据。当成对比较的结果没有联系时,配对比较模型可以推广为一类二进制响应模型。接收器操作特性(ROC)曲线及其在曲线下的相应区域通常用作性能指标,以评估二进制响应模型的区分能力。尽管它们的各个使用范围及其与二进制响应模型的密切联系,但ROC分析我们知识的分析从未扩展到配对的比较模型,因为将不同对象用作配对比较模型中的参考的问题阻止了传统的ROC方法产生明确且可解释的曲线。我们通过提出两种新的方法来构建ROC曲线以进行配对的比较数据,这些方法可提供可解释的统计数据并维持所需的渐近性能,从而解决了这一问题。然后,将这些方法应用于正面的职业体育竞赛数据并分析。

Paired comparison models are used for analyzing data that involves pairwise comparisons among a set of objects. When the outcomes of the pairwise comparisons have no ties, the paired comparison models can be generalized as a class of binary response models. Receiver operating characteristic (ROC) curves and their corresponding areas under the curves are commonly used as performance metrics to evaluate the discriminating ability of binary response models. Despite their individual wide range of usage and their close connection to binary response models, ROC analysis to our knowledge has never been extended to paired comparison models since the problem of using different objects as the reference in paired comparison models prevents traditional ROC approach from generating unambiguous and interpretable curves. We focus on addressing this problem by proposing two novel methods to construct ROC curves for paired comparison data which provide interpretable statistics and maintain desired asymptotic properties. The methods are then applied and analyzed on head-to-head professional sports competition data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源