论文标题
仪表理论的palatini公式:对缓慢通货膨胀的影响
Palatini formulation for gauge theory: implications for slow-roll inflation
论文作者
论文摘要
我们考虑了量规场理论的公式,其中量规场$a_α$和场强$ f_ {αβ} $是自变量,就像重力的palatini公式一样。对于最简单的仪表作用,已知这等同于通常的公式。我们在$ f_ {αβ} $和标量字段之间添加非最小耦合,求解$ f_ {αβ} $,然后将其插入动作中。这导致了修改的量规字段和标量字段项。我们考虑慢速通货膨胀,并表明由于标量部门的修改,与通常的情况不同,加拉顿电位上的高阶项不会破坏其平坦性。相反,它们使有效的潜力更接近二次。这些修改还解决了一个问题,即palatini公式中的希格斯通货膨胀对高阶项敏感。
We consider a formulation of gauge field theory where the gauge field $A_α$ and the field strength $F_{αβ}$ are independent variables, as in the Palatini formulation of gravity. For the simplest gauge field action, this is known to be equivalent to the usual formulation. We add non-minimal couplings between $F_{αβ}$ and a scalar field, solve for $F_{αβ}$ and insert it back into the action. This leads to modified gauge field and scalar field terms. We consider slow-roll inflation and show that because of the modifications to the scalar sector, adding higher order terms to the inflaton potential does not spoil its flatness, unlike in the usual case. Instead they make the effective potential closer to quadratic. The modifications also solve the problem that Higgs inflation in the Palatini formulation is sensitive to higher order terms.