论文标题
过渡剪切湍流中的模式。第2部分:出现和最佳波长
Patterns in transitional shear turbulence. Part 2: Emergence and optimal wavelength
论文作者
论文摘要
在壁构成的剪切流中的低雷诺数湍流\ emph {en ute}到层流的流动采用了倾斜的,空间临时的湍流结构的形式。在平面轴向流中,这些通过时空间歇过程从均匀的湍流中出现,其中局部的准层间隙随机成核并消失。对于稍低的雷诺数,在空间周期性和大约固定的湍流线中模式占主导地位。分析了准层区域的统计数据,包括时空和时间尺度的分布及其雷诺数依赖性。与间歇性的准层间隙之间的均匀湍流和流动之间观察到平滑但标记的过渡,而从间隙到常规模式的过渡则更逐渐。这些模式中的波长选择通过各种尺寸的倾斜结构域中的数值模拟进行分析。通过最小域中的寿命测量值,以及基于波长的大域中波长的分析,我们量化了模式的存在和非线性稳定性,这是波长和雷诺数的函数。我们报告,首选波长沿着层流扰动的界面最大化大规模流动的能量和耗散。这种最佳行为主要是由于大规模流动的对流性质,湍流波动仅扮演次要角色。
Low Reynolds number turbulence in wall-bounded shear flows \emph{en route} to laminar flow takes the form of oblique, spatially-intermittent turbulent structures. In plane Couette flow, these emerge from uniform turbulence via a spatiotemporal intermittent process in which localised quasi-laminar gaps randomly nucleate and disappear. For slightly lower Reynolds numbers, spatially periodic and approximately stationary turbulent-laminar patterns predominate. The statistics of quasi-laminar regions, including the distributions of space and time scales and their Reynolds number dependence, are analysed. A smooth, but marked transition is observed between uniform turbulence and flow with intermittent quasi-laminar gaps, whereas the transition from gaps to regular patterns is more gradual. Wavelength selection in these patterns is analysed via numerical simulations in oblique domains of various sizes. Via lifetime measurements in minimal domains, and a wavelet-based analysis of wavelength predominance in a large domain, we quantify the existence and non-linear stability of a pattern as a function of wavelength and Reynolds number. We report that the preferred wavelength maximises the energy and dissipation of the large-scale flow along laminar-turbulent interfaces. This optimal behaviour is primarily due to the advective nature of the large-scale flow, with turbulent fluctuations playing only a secondary role.