论文标题

在分析空间上躺着的遗传学代数

Hermitian Lie algebroids over analytic spaces

论文作者

Sarkar, Abhishek

论文摘要

我们分别在复杂的代数品种和分析空间上探索复杂的Riemannian几何形状和遗传学指标。特别是,我们引入了有关霍尔晶层代数的赫尔米利亚指标,并使用其规范诱导的内部产品检查相关的特征叶面。此外,我们研究了与叶片叶状体的特征性叶子在Hermitian歧管上的特征性叶子产生的与叶片空间,叶子和某些不变子空间相关的过度酒精学。最后,我们将de rham的同胞的概念扩展到了分析环境。

We explore complex Riemannian geometry and Hermitian metrics on complex algebraic varieties and analytic spaces, respectively. In particular, we introduce Hermitian metrics on holomorphic Lie algebroids and examine the associated characteristic foliation with its canonically induced inner product. Furthermore, we study hypercohomologies related to the leaf space, leaves, and certain invariant subspaces arising from the characteristic foliation of a holomorphic Lie algebroid over a Hermitian manifold. Finally, we extend the concept of equivariant de Rham cohomology to the analytic setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源