论文标题

局部快捷方式删除

Localized Shortcut Removal

论文作者

Müller, Nicolas M., Jacobs, Jochen, Williams, Jennifer, Böttinger, Konstantin

论文摘要

机器学习是一个数据驱动的领域,基础数据集的质量在学习成功中起着至关重要的作用。但是,持有测试数据的高性能并不一定表明模型会概括或学习任何有意义的东西。这通常是由于机器学习快捷方式的存在 - 数据中的功能具有预测性,但与手头的问题无关。为了解决此问题的捷径,捷径比真实功能更小,更本地化,我们提出了一种新颖的方法来检测和删除它们。我们使用经过对抗训练的镜头来检测和消除图像中高度预测性但语义上未连接的线索。在我们对合成和现实世界数据的实验中,我们表明我们提出的方法可靠地识别并中和此类快捷方式,而不会导致清洁数据上模型性能降解。我们认为,我们的方法可以导致更有意义,更有说服力的机器学习模型,尤其是在基础数据集质量至关重要的情况下。

Machine learning is a data-driven field, and the quality of the underlying datasets plays a crucial role in learning success. However, high performance on held-out test data does not necessarily indicate that a model generalizes or learns anything meaningful. This is often due to the existence of machine learning shortcuts - features in the data that are predictive but unrelated to the problem at hand. To address this issue for datasets where the shortcuts are smaller and more localized than true features, we propose a novel approach to detect and remove them. We use an adversarially trained lens to detect and eliminate highly predictive but semantically unconnected clues in images. In our experiments on both synthetic and real-world data, we show that our proposed approach reliably identifies and neutralizes such shortcuts without causing degradation of model performance on clean data. We believe that our approach can lead to more meaningful and generalizable machine learning models, especially in scenarios where the quality of the underlying datasets is crucial.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源