论文标题

牙齿:部分3D牙科模型和2D全景图像从牙齿上插入牙齿

ToothInpaintor: Tooth Inpainting from Partial 3D Dental Model and 2D Panoramic Image

论文作者

Yang, Yuezhi, Cui, Zhiming, Li, Changjian, Wang, Wenping

论文摘要

在正畸治疗中,由牙冠和根组成的完整牙齿模型对于制定治疗计划是必不可少的。但是,由于CBCT扫描的大规模辐射,有时会限制从CBCT图像中获取牙根信息以从CBCT图像获得完整的牙齿模型。因此,从现成的输入中重建完整的牙齿形状,例如部分内部扫描和2D全景图像是一种适用的且有价值的解决方案。在本文中,我们提出了一个称为ToothinPaintor的神经网络,该网络将部分3D牙科模型和2D全景图像作为输入,并用高质量的根(S)重建完整的牙齿模型。从技术上讲,我们利用3D和2D输入的隐式表示,并学习完整牙齿形状的潜在空间。在测试时,给定输入,我们通过神经优化成功将其投射到学习的潜在空间,以获取在输入上的完整牙齿模型。为了帮助找到强大的投影,我们的管道中利用了一个新颖的对抗学习模块。我们在从现实世界诊所收集的数据集上广泛评估了我们的方法。评估,比较和全面的消融研究表明,我们的方法可以稳健地产生准确的完整牙齿模型,并且胜过最新方法。

In orthodontic treatment, a full tooth model consisting of both the crown and root is indispensable in making the treatment plan. However, acquiring tooth root information to obtain the full tooth model from CBCT images is sometimes restricted due to the massive radiation of CBCT scanning. Thus, reconstructing the full tooth shape from the ready-to-use input, e.g., the partial intra-oral scan and the 2D panoramic image, is an applicable and valuable solution. In this paper, we propose a neural network, called ToothInpaintor, that takes as input a partial 3D dental model and a 2D panoramic image and reconstructs the full tooth model with high-quality root(s). Technically, we utilize the implicit representation for both the 3D and 2D inputs, and learn a latent space of the full tooth shapes. At test time, given an input, we successfully project it to the learned latent space via neural optimization to obtain the full tooth model conditioned on the input. To help find the robust projection, a novel adversarial learning module is exploited in our pipeline. We extensively evaluate our method on a dataset collected from real-world clinics. The evaluation, comparison, and comprehensive ablation studies demonstrate that our approach produces accurate complete tooth models robustly and outperforms the state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源