论文标题
纳米多孔硅 - 吡咯吡咯型杂种如何在水性电解质中弯曲其肌肉:在Operando高分辨率X射线衍射和基于电子断层扫描的微机械计算机模拟中
How nanoporous silicon-polypyrrole hybrids flex their muscles in aqueous electrolytes: In operando high-resolution x-ray diffraction and electron tomography-based micromechanical computer simulations
论文作者
论文摘要
宏观菌株实验表明,通过肌肉聚合物聚集体功能功能化的平行的,类似通道的纳米孔穿过的Si晶体表现出大而可逆的电化学电化学在水溶液中的启动。在微观层面上,该系统仍然有开放的问题,即有关PPY的电化学膨胀和收缩如何作用于NP-SI孔隙壁,以及孔阵列的集体摩托车如何从单纳米波尔行为中出现。基于TEM层析成像的3D重建对纳米方培养基的3D重建,对Operando X射线衍射实验进行了分析,表明,尽管单晶宿主矩阵的各向异性弹性是显着的,但平面机械响应主要是各向同性的。然而,源自纳米孔的平行比对的结构各向异性导致面内机电反应之间的显着差异。这种响应无法通过平行圆柱通道的简单2D排列来描述。相反,模拟强调了Si孔壁的树突形状,包括主要通道之间的孔连接,导致晶体宿主中的复杂,不均匀的应力 - 应变场。在执行器特性动力学上,时间依赖性的X射线散射暗示了纳米结合聚合物在(反)离子吸附和解吸时的塑性局限性,塑性变形和蠕变的重要性,这是导致孔隙量度电局的非常孔径的过程。从更一般的角度来看,我们的研究表明,基于TEM断层扫描的微型机械建模与高分辨率X射线散射实验的组合为从单纳米孔到多孔 - 中等量表的纳米多孔复合材料的操作分析提供了强大的方法。
Macroscopic strain experiments revealed that Si crystals traversed by parallel, channel-like nanopores functionalized with the muscle polymer polypyrrole exhibit large and reversible electrochemo-mechanical actuation in aqueous electrolytes. On the microscopical level this system still bears open questions, as to how the electrochemical expansion and contraction of PPy acts on to np-Si pore walls and how the collective motorics of the pore array emerges from the single-nanopore behavior. An analysis of in operando X-ray diffraction experiments with micromechanical finite element simulations, based on a 3D reconstruction of the nanoporous medium by TEM tomography, shows that the in-plane mechanical response is dominantly isotropic despite the anisotropic elasticity of the single crystalline host matrix. However, the structural anisotropy originating from the parallel alignment of the nanopores lead to significant differences between the in- and out-of-plane electromechanical response. This response is not describable by a simple 2D arrangement of parallel cylindrical channels. Rather, the simulations highlight that the dendritic shape of the Si pore walls, including pore connections between the main channels, cause complex, inhomogeneous stress-strain fields in the crystalline host. Time-dependent X-ray scattering on the dynamics of the actuator properties hint towards the importance of diffusion limitations, plastic deformation and creep in the nanoconfined polymer upon (counter-)ion adsorption and desorption, the very pore-scale processes causing the macroscopic electroactuation. From a more general perspective, our study demonstrates that the combination of TEM tomography-based micromechanical modeling with high-resolution X-ray scattering experiments provides a powerful approach for in operando analysis of nanoporous composites from the single-nanopore up to the porous-medium scale.