论文标题
基于GPR和在模型空间中学习的地下诊断
Underground Diagnosis Based on GPR and Learning in the Model Space
论文作者
论文摘要
地面穿透性雷达(GPR)已被广泛用于管道检测和地下诊断。在实际应用中,在完全分析获得的GPR数据之前,很少会认识到检测区域的GPR数据和可能的地下异常结构的特征,从而引起挑战以自动识别地下结构或异常。在本文中,提出了基于模型空间中学习的GPR B-SCAN图像诊断方法。在模型空间中学习的想法是将拟合在数据的一部分上的模型用作数据的更稳定和简约的表示。对于GPR映像,提出了两个方向回波状态网络(2D-ESN),以通过下一个项目预测来拟合图像段。通过在水平和垂直方向上构建图像上点之间的连接,2D-ESN将GPR图像段整体上为一个整体,并且可以有效地捕获GPR图像的动态特性。然后,可以在2D-ESN模型上进一步实施半监督和监督的学习方法,以进行地下诊断。进行了实际数据集的实验,结果证明了所提出的模型的有效性。
Ground Penetrating Radar (GPR) has been widely used in pipeline detection and underground diagnosis. In practical applications, the characteristics of the GPR data of the detected area and the likely underground anomalous structures could be rarely acknowledged before fully analyzing the obtained GPR data, causing challenges to identify the underground structures or abnormals automatically. In this paper, a GPR B-scan image diagnosis method based on learning in the model space is proposed. The idea of learning in the model space is to use models fitted on parts of data as more stable and parsimonious representations of the data. For the GPR image, 2-Direction Echo State Network (2D-ESN) is proposed to fit the image segments through the next item prediction. By building the connections between the points on the image in both the horizontal and vertical directions, the 2D-ESN regards the GPR image segment as a whole and could effectively capture the dynamic characteristics of the GPR image. And then, semi-supervised and supervised learning methods could be further implemented on the 2D-ESN models for underground diagnosis. Experiments on real-world datasets are conducted, and the results demonstrate the effectiveness of the proposed model.