论文标题

使用Edge-Sparse嵌入无监督的超像素生成

Unsupervised Superpixel Generation using Edge-Sparse Embedding

论文作者

Geusen, Jakob, Bredell, Gustav, Zhou, Tianfei, Konukoglu, Ender

论文摘要

根据像素相对于诸如颜色或空间位置的特征的相似性,将图像分配到超像素中可以显着降低数据的复杂性并改善后续图像处理任务。无监督超级像素生成的初始算法仅依赖于本地提示,而没有优先考虑与任意的线索相比。另一方面,基于无监督的深度学习的最新方法要么无法正确解决Superpixel Edge依从性和紧凑性之间的权衡,要么缺乏对生成的Superpixels数量的控制。通过使用具有强空间相关性的随机图像作为输入,\ ie,模糊的噪声图像,在非跨务图像解码器中,我们可以减少预期的对比度数,并在重建的图像中实施平滑,连接的边缘。我们通过将其他空间信息编码到解码器的最后一个隐藏层中的零件平滑激活图中来生成Edge-Sparse像素嵌入,并使用标准的聚类算法来提取高质量的超级像素。我们提出的方法在BSDS500,Pascal-Contept和显微镜数据集上达到最先进的性能。

Partitioning an image into superpixels based on the similarity of pixels with respect to features such as colour or spatial location can significantly reduce data complexity and improve subsequent image processing tasks. Initial algorithms for unsupervised superpixel generation solely relied on local cues without prioritizing significant edges over arbitrary ones. On the other hand, more recent methods based on unsupervised deep learning either fail to properly address the trade-off between superpixel edge adherence and compactness or lack control over the generated number of superpixels. By using random images with strong spatial correlation as input, \ie, blurred noise images, in a non-convolutional image decoder we can reduce the expected number of contrasts and enforce smooth, connected edges in the reconstructed image. We generate edge-sparse pixel embeddings by encoding additional spatial information into the piece-wise smooth activation maps from the decoder's last hidden layer and use a standard clustering algorithm to extract high quality superpixels. Our proposed method reaches state-of-the-art performance on the BSDS500, PASCAL-Context and a microscopy dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源