论文标题
在拓扑优化的合规性 - 体积分数pareto前沿的某些属性上,可用于材料选择
On some properties of the compliance-volume fraction Pareto front in topology optimization useful for material selection
论文作者
论文摘要
为通过拓扑优化设计的零件选择最佳材料是一个复杂的问题。帕累托前沿的形状和特性在此选择中起着重要作用。在本文中,我们表明,线性弹性中某些拓扑优化问题的合规性 - 体积分数帕累托(Pareto)具有一些有用的属性。与其他设计方法(例如参数结构优化)相比,这些属性对拓扑优化的效率提供了有趣的观点。我们构建了一个简单的元模型,它仅需要一个完整的拓扑优化才能适合整个帕累托阵线。精确的帕累托前部是独立获得的。相对于这些精确的帕累托阵线,在所测试的不同问题上,构造的快速元模型的最大误差为6.4%。然后,在使用4种材料的说明性选择的MBB梁最小化的质量最小化中,成功测试了最佳材料的选择。
Selecting the optimal material for a part designed through topology optimization is a complex problem. The shape and properties of the Pareto front plays an important role in this selection. In this paper we show that the compliance-volume fraction Pareto fronts of some topology optimization problems in linear elasticity share some useful properties. These properties provide an interesting point of view on the efficiency of topology optimization compared to other design approaches such as parametric structural optimization. We construct a simple meta-model which requires only one full topology optimization to fit the whole Pareto fronts. Precise Pareto fronts are obtained independently. The fast meta-model constructed has a maximum error of 6.4% with respect to these precise Pareto fronts, on the different problems tested. The selection of the optimal material is then successfully tested on the mass minimization of an MBB beam with an illustrative choice of 4 materials.