论文标题

Deepangle:使用深度学习的层析成像图像中接触角的快速计算

DeepAngle: Fast calculation of contact angles in tomography images using deep learning

论文作者

Rabbani, Arash, Sun, Chenhao, Babaei, Masoud, Niasar, Vahid J., Armstrong, Ryan T., Mostaghimi, Peyman

论文摘要

Deepangle是一种基于机器学习的方法,可确定多孔材料的层析成像图像中不同阶段的接触角。在垂直于角平面的表面内需要进行3--D角度的测量,并且在处理图像体素的离散空间时可能会变得不准确。计算密集型解决方案是使用适应性网格将所有表面相关联和矢量化,然后测量所需平面内的角度。相反,本研究提供了一种以深度学习为动力的快速和低成本技术,可以直接从图像中估算界面角度。针对直接测量技术,对综合图像和逼真的图像进行了测试,并发现将R平方提高5%至16%,同时降低计算成本20倍。这种快速方法尤其适用于处理大型断层扫描数据和时间分辨图像,这在计算上是密集的。已开发的代码和数据集可在GitHub(https://www.github.com/arashrabbani/deepangle)的一个开放存储库中获得。

DeepAngle is a machine learning-based method to determine the contact angles of different phases in the tomography images of porous materials. Measurement of angles in 3--D needs to be done within the surface perpendicular to the angle planes, and it could become inaccurate when dealing with the discretized space of the image voxels. A computationally intensive solution is to correlate and vectorize all surfaces using an adaptable grid, and then measure the angles within the desired planes. On the contrary, the present study provides a rapid and low-cost technique powered by deep learning to estimate the interfacial angles directly from images. DeepAngle is tested on both synthetic and realistic images against the direct measurement technique and found to improve the r-squared by 5 to 16% while lowering the computational cost 20 times. This rapid method is especially applicable for processing large tomography data and time-resolved images, which is computationally intensive. The developed code and the dataset are available at an open repository on GitHub (https://www.github.com/ArashRabbani/DeepAngle).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源