论文标题

减少频率和空间结构域的域间隙,以适应医疗图像分割的跨模式域

Reducing Domain Gap in Frequency and Spatial domain for Cross-modality Domain Adaptation on Medical Image Segmentation

论文作者

Liu, Shaolei, Yin, Siqi, Qu, Linhao, Wang, Manning

论文摘要

无监督的域适应性(UDA)旨在学习在源域上训练的模型,并在未标记的目标域上表现良好。在医学图像分割字段中,大多数现有的UDA方法都取决于对抗性学习,以解决不同图像模式之间的域间隙,由于其复杂的训练过程,这是无效的。在本文中,我们提出了一种基于频率和空间域转移的简单而有效的UDA方法,UNER多教师蒸馏框架。在频域中,我们首先引入了非抽样的Contourlet变换,以识别域 - 不变和域变化的频率组件(DIFS和DVFS),然后将差异保持不变,同时替换源域图像的DVF,并用目标域图像范围图像范围图像缩小域图。在空间域中,我们提出了一个基于批处理动量更新的直方图匹配策略,以减少域变化的图像样式偏差。在两个跨模式医学图像分割数据集(心脏,腹部)上进行的实验表明,与最新方法相比,我们所提出的方法的性能优于性能。

Unsupervised domain adaptation (UDA) aims to learn a model trained on source domain and performs well on unlabeled target domain. In medical image segmentation field, most existing UDA methods depend on adversarial learning to address the domain gap between different image modalities, which is ineffective due to its complicated training process. In this paper, we propose a simple yet effective UDA method based on frequency and spatial domain transfer uner multi-teacher distillation framework. In the frequency domain, we first introduce non-subsampled contourlet transform for identifying domain-invariant and domain-variant frequency components (DIFs and DVFs), and then keep the DIFs unchanged while replacing the DVFs of the source domain images with that of the target domain images to narrow the domain gap. In the spatial domain, we propose a batch momentum update-based histogram matching strategy to reduce the domain-variant image style bias. Experiments on two cross-modality medical image segmentation datasets (cardiac, abdominal) show that our proposed method achieves superior performance compared to state-of-the-art methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源